[1]Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006. [2]郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2008. Guo Jianting. Materials Science and Engineering for Superalloys[M]. Beijing: Science Press, 2008. [3]张 健, 王 莉, 王 栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094. Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9): 1077-1094. [4]Tsukada Y, Murata Y, Koyama T, et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories[J]. Acta Materialia, 2011, 59(16): 6378-6386. [5]Shishvan S S, Mcmeeking R M, Pollock T M, et al. Discrete dislocation plasticity analysis of the effect of interfacial diffusion on the creep response of Ni single-crystal superalloys[J]. Acta Materialia, 2017, 135: 188-200. [6]Baldan A. Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories[J]. Journal of Materials Science, 2002, 37(11): 2171-2202. [7]Baldan A. Progress in Ostwald ripening theories and their applications to the gamma'-precipitates in nickel-base superalloys-Part II-Nickel-base superalloys[J]. Journal of Materials Science, 2002, 37(12): 2379-2405. [8]Qin X Z, Guo J T, Yuan C, et al. Effects of long-term thermal exposure on the microstructure and properties of a cast Ni-base superalloy[J]. Metallurgical and Materials Transactions A, 2007, 38(12): 3014-3022. [9]Lian Z, Yu J, Sun X, et al. Temperature dependence of tensile behavior of Ni-based superalloy M951[J]. Materials Science and Engineering A, 2008, 489(1-2): 227-233. [10]Yu J, Lian Z, Chu Z, et al. Properties and microstructures of M951 alloy after long-term exposure[J]. Materials Science and Engineering A, 2010, 527(7-8): 1896-1902. [11]Xia P C, Yu J J, Sun X F, et al. The influence of thermal exposure on the microstructure and stress rupture property of DZ951 nickel-base alloy[J]. Journal of Alloys and Compounds, 2007, 443(1-2): 125-131. [12]陈晶阳, 任晓冬, 张明军, 等. 铸造镍基高温合金K439B的组织及典型性能[J]. 金属热处理, 2023, 48(1): 100-104. Chen Jingyang, Ren Xiaodong, Zhang Mingjun, et al. Microstructure and typical properties of cast Ni-based superalloy K439B[J]. Heat Treatment of Metals, 2023, 48(1): 100-104. [13]王 华, 王泽钰, 宋嘉明, 等. 固溶处理对粉末冶金GH4099合金组织及性能的影响[J]. 金属热处理, 2022, 47(7): 86-91. Wang Hua, Wang Zeyu, Song Jiaming, et al. Effect of solution treatment on microstructure and properties of powder metallurgy GH4099 alloy[J]. Heat Treatment of Metals, 2022, 47(7): 86-91. [14]谭 钢, 李慧中, 王 岩, 等. 退火处理对新型Ni-Co-Cr基粉末高温合金微观组织与性能的影响[J]. 中国有色金属学报, 2020, 30(5): 1027-1037. Tan Gang, Li Huizhong, Wang Yan, et al. Effect of annealing treatment on microstructure and properties of a new Ni-Co-Cr based powder superalloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(5): 1027-1037. [15]邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能[J]. 中国有色金属学报, 2019, 29(5): 983-989. Deng Wenkai, Xu Jinghao, Jiang Liang. Thermo-mechanical fatigue behavior of Inconel 718 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(5): 983-989. [16]李小兵, 李 伟. 固溶温度对高温合金GH3600微观组织与硬度的影响[J]. 金属热处理, 2020, 45(6): 51-55. Li Xiaobing, Li Wei. Effect of solution temperature on microstructure and hardness of GH3600 superalloy[J]. Heat Treatment of Metals, 2020, 45(6): 51-55. [17]Sui S, Chen J, Ming X, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2733-2740. [18]吴业琼, 雷 勇, 司 艳, 等. 恢复热处理对K403镍基高温合金组织与性能的影响[J]. 金属热处理, 2022, 47(8): 194-199. Wu Yeqiong, Lei Yong, Si Yan, et al. Effect of recovery heat treatment on microstructure and properties of K403 nickel-based superalloy[J]. Heat Treatment of Metals, 2022, 47(8): 194-199. [19]Schuh C A. Nanoindentation studies of materials[J]. Materials Today (Kidlington, England), 2006, 9(5): 32-40. [20]Zhang Z, Li Y, Wu W. Effects of loading rate and peak load on nanoindentation creep behavior of DD407Ni-base single crystal superalloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 206-216. [21]马亚鑫, 高怡斐, 曾雨吟. 纳米压痕法测定镍基定向凝固高温合金相的力学性能[J]. 物理测试, 2015, 33(2): 16-21. Ma Yaxin, Gao Yifei, Zeng Yuyin. Determination of mechanical properties of phase in directionally-solidified nickel-base super-alloy by nano-indentation[J]. Physics Examination and Testing, 2015, 33(2): 16-21. [22]Yan Wuzhu, Li Youliang, Wen Zhixun, et al. Effect of crystallographic orientation on nano-indentation behavior of nickel based single crystal super alloys[J]. Rare Materials and Engineering, 2020, 49(6): 1854-1859. [23]Liu M, Zheng Q, Wang X, et al. Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique[J]. Mechanics of Materials, 2022, 164: 104143. [24]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. [25]Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425. [26]赵新宝, 刘 林, 余竹焕, 等. X射线衍射法测量单晶高温合金的取向[J]. 稀有金属材料与工程, 2009, 38(7): 1280-1283. Zhao Xinbao, Liu Lin, Yu Zhuhuan, et al. A XRD method to measure orientation of single crystal superalloys[J]. Rare Metal Materials and Engineering, 2009, 38(7): 1280-1283. [27]Doi M. Elasticity effects on the microstructure of alloys containing coherent precipitates[J]. Progress in Materials Science, 1996, 40(2): 79-180. [28]Gleiter H, Hornbogen E. Theorie der wechselwirkung von versetzungen mit kohärenten geordneten zonen (I)[J]. Physica Status Solidi (b), 1965, 12(1): 235-250. [29]Wang G, Huang L, Zhan X, et al. Strength-hardness correlations of thermal-exposed oxide dispersion strengthened nickel-based superalloy with different grain size distributions[J]. Materials Characterization, 2021, 178: 111178. [30]Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness[J]. Materials Science and Engineering A, 2011, 529: 62-73. [31]Tiryakioğlu M, Robinson J S, Salazar-Guapuriche M A, et al. Hardness-strength relationships in the aluminum alloy 7010[J]. Materials Science and Engineering A, 2015, 631: 196-200. [32]Bolshakov A, Oliver W C, Pharr G M. Influences of stress on the measurement of mechanical properties using nanoindentation. Part II. Finite element simulations[J]. Journal of Materials Research, 1996, 11(3): 760-768. [33]Pharr G M. Measurement of mechanical properties by ultra-low load indentation[J]. Materials Science & Engineering A, 1998, 253(1): 151-159. |