[1]秦 翔, 杨 军, 邹德宁, 等. 轧辊再制造及其表面强化技术的研究进展[J]. 材料保护, 2019, 52(2): 119-125. Qin Xiang, Yang Jun, Zou Dening, et al. Research status of remanufacturing and surface reinforcement technology for milling roll[J]. Materials Protection, 2019, 52(2): 119-125. [2]李红伟. 轧辊新型激光表面强化技术研究[J]. 中国金属通报, 2022(7): 114-116. [3]Li Y X, Zhang P F, Bai P K, et al. Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 142-149. [4]Zhao Z Y, Zhang L Z, Bai P K, et al. Tribological behavior of in situ TiC/graphene/graphite/Ti6Al4V matrix composite through laser cladding[J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 1317-1330. [5]Zhang D, Cui X F, Jin G, et al. Effect of in-situ synthesis of multilayer graphene on the microstructure and tribological performance of laser cladded Ni-based coatings[J]. Applied Surface Science, 2019, 495: 143581. [6]周建波, 张 晶, 张蕾涛, 等. 激光工艺参数对Ni60/WC涂层裂纹率及组织的影响[J]. 金属热处理, 2021, 46(9): 252-257. Zhou Jianbo, Zhang Jing, Zhang Leitao, et al. Effect of laser processing parameters on crack rate and microstructure of Ni60/WC coating[J]. Heat Treatment of Metals, 2021, 46(9): 252-257. [7]黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793. Huang Haibo, Sun Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793 [8]Zhao S B, Jia C P, Yuan Y X, et al. Effects of laser remelting on microstructural characteristics of Ni-WC composite coatings produced by laser hot wire cladding[J]. Journal of Alloys and Compounds, 2022, 908: 164612. [9]Song B, Yu T, Jiang X, et al. Development mechanism and solidification morphology of molten pool generated by laser cladding[J]. International Journal of Thermal Sciences, 2021, 159: 106579. [10]Cui C, Wu M P, He R, et al. Understanding Stellite-6 coating prepared by laser cladding: Convection and columnar-to-equiaxed transition[J]. Optics and Laser Technology, 2022, 149: 107885. [11]Liang J, Yin X Y, Lin Z Y, et al. Effects of LaB6 on microstructure evolution and properties of in-situ synthetic TiC+TiBx reinforced titanium matrix composite coatings prepared by laser cladding[J]. Surface and Coatings Technology, 2020, 403: 126409. [12]Xia M, Gu D, Ma C, et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting[J]. Journal of Alloys and Compounds, 2018, 747: 684-695. [13]Yong Y, Fu W, Zhang X, et al. In-situ synthesis of WC/TaC reinforced nickel-based composite alloy coating by laser cladding[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3176-3181. [14]Xi L X, Guo S, Gu D D, et al. Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites[J]. Journal of Alloys and Compounds, 2020, 819: 152980. [15]Dang W T, Ren S F, Zhou J S, et al. Influence of Cu on the mechanical and tribological properties of Ti3SiC2[J]. Ceramics International, 2016, 42(8): 9972-9980. [16]张丽珠, 李 峰. 离心泵叶轮表面激光熔覆(Ti,W)C颗粒增强Ni基熔覆层分析[J]. 应用激光, 2023, 43(9): 9-14. Zhang Lizhu, Li Feng. Analysis of laser cladding (Ti,W)C particle reinforced Ni base cladding layer on impeller surface of centrifugal pump[J]. Applied Laser, 2023, 43(9): 9-14. [17]田鹿岩, 李新梅, 刘伟斌. CeO2添加量对激光熔覆TiB2-TiC/Ni复合涂层组织和性能的影响[J]. 机械工程材料, 2023, 47(9): 82-86, 93. Tian Luyan, Li Xinmei, Liu Weibin. Effect of CeO2 addition amount on microstructure and properties of laser cladded TiB2-TiC/Ni composite coating[J]. Materials For Mechanical Engineering, 2023, 47(9): 82-86, 93. |