[1]Li C, Chen X, Li Z, et al. Comprehensive evaluation method of transmission line operating status based on improved combination weighting evaluation model[J]. Energy Reports, 2022, 8: 387-397. [2]马 键, 杨芒生, 王赫男, 等. 输电线路铁塔基础安全综合评价体系[J]. 安全与环境学报, 2020, 20(1): 25-30. Ma Jian, Yang Mangsheng, Wang Henan, et al. Innovated safety evaluation system for the foundation construction of power transmission line towers[J]. Journal of Safety and Environment, 2020, 20(1): 25-30. [3]韩先才, 孙 昕, 陈海波, 等. 中国特高压交流输电工程技术发展综述[J]. 中国电机工程学报, 2020, 40(14): 4371-4386. Han Xiancai, Sun Xin, Chen Haibo, et al. The overview of development of UHV AC transmission technology in China[J]. Proceedings of the CSEE, 2020, 40(14): 4371-4386. [4]刘 铁, 赵 东, 孙田鸽, 等. 两种材质输电线路施工跨越架的力学对比分析[J]. 安徽建筑大学学报, 2018, 26(4): 62-66. Liu Tie, Zhao Dong, Sun Tiange, et al. Contrast and analysis to materials of crossing frame for transmission line stringing[J]. Journal of Anhui Jianzhu University, 2018, 26(4): 62-66. [5]赵彦乐, 邹宇明, 丁 桦. C含量对冷轧Fe-6Mn-1Al中锰钢组织与性能的影响[J]. 金属热处理, 2022, 47(2): 35-40. Zhao Yanle, Zou Yuming, Ding Hua. Effect of C content on microstructure and mechanical properties of cold-rolled Fe-6Mn-1Al medium manganese steel[J]. Heat Treatment of Metals, 2022, 47(2): 35-40. [6]Li X, Song R, Zhou N, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated byintercritical annealing[J]. Scripta Materialia, 2018, 154: 30-33. [7]Sun B, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels[J]. Acta Materialia, 2018, 148: 249-262. [8]Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Effect of arisen dislocation density and texture components during cold rolling and annealing treatments on hydrogen induced cracking susceptibility in pipeline steel[J]. Journal of Materials Research, 2016, 31(21): 3390-3400. [9]Liu C, Peng Q, Xue Z, et al. Microstructure-tensile properties relationship and austenite stability of a Nb-Mo micro-alloyed medium-Mn TRIP steel[J]. Metals, 2018, 8(8): 615-630. [10]彭龙生, 刘春泉, 熊 芬, 等. 轧制方式及热处理工艺对中锰钢组织和性能的影响[J]. 金属热处理, 2023, 48(8): 106-112. Peng Longsheng, Liu Chunquan, Xiong Fen, et al. Effects of rolling method and heat treatment process on microstructure and properties of medium-Mn steel[J]. Heat Treatment of Metals, 2023, 48(8): 106-112. [11]Eskandari M, Zarei-Hanzaki A, Szpunar J A, et al. Microstructure evolution and mechanical behavior of a new microalloyed high Mn austenitic steel during compressive deformation[J]. Materials Science and Engineering A, 2014, 615, 424-435. [12]DeKnijf D, Föjer C, Kestens L A I. Factors influencing the austenite stability during tensile testing of Quenching and Partitioning steel determined via in-situ Electron Backscatter Diffraction[J]. Materials Science and Engineering A, 2015, 638, 219-227. [13]Cai Z H, Ding H, Misra R D K. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84, 229-236. [14]Srivastava A K, Bhattacharjee D, Jha G. Microstructural and mechanical characterization of C-Mn-Al-Si cold-rolled TRIP-aided steel[J]. Materials Science and Engineering A, 2007, 445, 549-557. [15]Grange R A. Strengthening steel by austenite grain refinement[J]. ASM Trans Quart, 1966, 59(1): 26-48. [16]Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity[J]. Acta Materialia, 2016, 121: 202-214. [17]Mishra G, Chandan A K, Kundu S. Hotrolled and cold rolled medium manganese steel: Mechanical properties and microstructure[J]. Materials Science and Engineering: A, 2017, 701: 319-327. [18]Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel[J]. Scripta Materialia, 2013, 68(11): 865-868. [19]张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Z Y, Sun X J, Yong QL, et al. Precipitation Behavior of Nanometer-sized Carbides in Nb-Mo Microalloyed High Strengh steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [20]Hu Z P, Xu Y B, Zou Y, et al. Effect ofintercritical rolling temperature on microstructure-mechanical property relationship in a medium Mn-TRIP steel containing δ ferrite[J]. Materials Science and Engineering A, 2018, 720: 1-10. |