[1]丁向群, 何国求, 陈成澍, 等. 6000系汽车用铝合金的研究应用进展[J]. 材料科学与工程学报, 2005, 23(2): 302-305. Ding Xiangqun, He Guoqiu, Chen Chengshu, et al. Advance in studies of 6000 aluminum alloy for automobile[J]. Journal of Materials Science and Engineering, 2005, 23(2): 302-305. [2]Xian F D, Jing S, Jia Y, et al. Influences of aging temperature and time on microstructure and mechanical properties of 6005A aluminum alloy extrusions[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 14-20. [3]王祝堂. 6061、6082铝合金时效机制及停放效应的工艺探讨[J]. 轻合金加工技术, 2010, 38(4): 61-62. [4]GB/T 6892—2015, 一般工业用铝及铝合金挤压型材[S]. [5]王彦俊, 孙 巍, 李鹏伟, 等. 6005A铝合金挤压型材热处理工艺研究[J]. 轻合金加工技术, 2012, 40(7): 43-56. Wang Yanjun, Sun Wei, Li Pengwei, et al. Research on heat treatment of 6005A aluminum alloy profile[J]. Light Alloy Fabrication Technology, 2012, 40(7): 43-56. [6]马 超. 停放效应与热处理工艺对铝合金性能及变形行为的影响研究[D]. 银川: 宁夏大学, 2018. [7]杨文超, 汪明朴, 盛晓菲, 等. 轨道交通车辆用6005A合金板材时效析出及硬化行为研究[J]. 金属学报, 2010, 46(12): 1481-1487. Yang Wenchao, Wang Mingpu, Sheng Xiaofei, et al. Study of the aging precipitation and hardening behavior of 6005A alloy sheet for rail traffic vehicle[J]. Acta Metallurgica Sinica, 2010, 46(12): 1481-1487. [8]马远辉, 田 进. 车用Al-Mg-Si系合金的多元合金化研究进展[J]. 轻金属, 2019(4): 54-58. Ma Yuanhui, Tian Jin. Research progress in multi-alloying of Al-Mg-Si alloys for automotive application[J]. Light Metals, 2019(4): 54-58. [9]刘东雨, 高 倩, 李宝让, 等. 6×××系铝合金导体材料的时效行为[J]. 材料热处理学报, 2013, 34(S1): 7-11. Liu Dongyu, Gao Qian, Li Baorang, et al. Aging behaviors of 6xxx series aluminum alloy for conductor materials[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 7-11. [10]李秋梅, 王春雷, 董刘颖, 等. Si、Mn元素含量对铝合金型材组织及性能影响[J]. 有色金属加工, 2020, 49(5): 46-48, 59. Li Qiumei, Wang Chunlei, Dong Liuying, et al. Effect of Si and Mn element contents on microstructure and properties of aluminum alloy profiles[J]. Nonferrous Metals Processing, 2020, 49(5): 46-48, 59. [11]Milkereit B, Wanderka N, Schick C, et al. Continuous cooling precipitation diagrams of Al-Mg-Si alloys[J]. Materials Science and Engineering A, 2012, 550: 87-96. [12]Yang W C, Huang L P, Zhang R R, et al. Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates[J]. Journal of Alloys and Compounds, 2012, 514(1): 220-233. [13]宋伟苑, 林高用, 李 琪. 人工时效前停放时间对7055铝合金挤压管显微组织与性能的影响[J]. 有色金属科学与工程, 2018, 9(5): 37-42. Song Weiyuan, Lin Gaoyong, Li Qi. Influence of conditioning time before artificial aging on the microstructure and properties of 7055 aluminium alloy extruded tube[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 37-42. [14]Mondolfo L F. Aluminum Alloys: Structure and Properties[M].Butter Worths, 1976. [15]Belov N A, Eskin D G. Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys[M]. Elsevier, 2005. [16]王 静, 徐国富, 李 耀, 等. 6005A铝合金的淬火敏感性及微观组织特征[J]. 材料研究与应用, 2019, 13(4): 263-270. Wang Jing, Xu Guofu, Li Yao, et al. Quenching sensitivity and microstructure characteristics of 6005A aluminum alloy[J]. Materials Research and Application, 2019, 13(4): 263-270. |