[1]朱东林, 孙登月, 杨家辉, 等. 等离子喷涂WC-20Cr3C2-7Ni/8YSZ复合涂层的组织及摩擦学性能[J]. 金属热处理, 2023, 48(2): 256-262. Zhu Donglin, Sun Dengyue, Yang Jiahui, et al.Microstructure and tribological properties of WC-20Cr3C2-7Ni/8YSZ composite coatings by plasma spraying[J]. Heat Treatment of Metals, 2023, 48(2): 256-262. [2]Zhang M, Li M, Chi J, et al. Effect of Ti on microstructure characteristics, carbide precipitation mechanism and tribological behavior of different WC types reinforced Ni-based gradient coating[J]. Surface and Coatings Technology, 2019, 374: 645-655. [3]Pan Y F, Liu A J, Huang L, et al. Effects of metal binder content and carbide grain size on the microstructure and properties of SPS manufactured WC-Fe composites[J]. Journal of Alloys and Compounds, 2019, 784: 519-526. [4]富 伟, 陈清宇, 徐明晗, 等. 等离子喷涂WC-Ni涂层的组织结构及力学性能[J]. 金属热处理, 2019, 44(4): 211-215. Fu Wei, Chen Qingyu, Xu Minghan, et al. Microstructure and mechanical properties of plasma sprayed WC-Ni coatings[J]. Heat Treatment of Metals, 2019, 44(4): 211-215. [5]Qiao L, Wu Y, Hong S, et al. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J]. Ceramics International, 2021, 47(2): 1829-1836. [6]张继武. 纳米SiC对激光重熔Fe/WC涂层组织及性能的影响研究[D]. 赣州: 江西理工大学, 2018. [7]陈志刚, 孔德军, 王 玲. 激光重熔对Ni-WC涂层组织与开裂的影响[J]. 材料热处理学报, 2008, 29(6): 149-153. Chen Zhigang, Kong Dejun, Wang Ling. Effect of laser re-melting on structure and cracking of Ni-WC coating[J]. Transactions of Materials and Heat Treatment, 2008, 29(6): 149-153. [8]赵运才, 张新宇, 孟 成. 热喷涂金属陶瓷涂层后处理技术的研究进展[J]. 表面技术, 2021, 50(7): 138-148. Zhao Yuncai, Zhang Xinyu, Meng Cheng. Research progress of thermal spraying cermet coating post-treatment technology[J]. Surface Technology, 2021, 50(7): 138-148. [9]李 刚. 热等静压Ti-6Al-4V材料的表面加热辅助超声复合滚压强化机理研究[D]. 广州: 华南理工大学, 2017. [10]屈盛官, 潘玉祥, 李 刚, 等. Ti-6Al-4V合金的加温辅助滚压及微动磨损性能[J]. 华南理工大学学报(自然科学版), 2016, 44(3): 1-7. Qu Shengguan, Pan Yuxiang, Li Gang, et al. Warming-assisted burnishing and fretting wear performance of Ti-6Al-4V alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(3): 1-7. [11]巩贤宏. 温度场辅助超声滚压强化Inconel718合金表面完整性和机械性能的研究[D]. 济南: 齐鲁工业大学, 2021. [12]Li G, Qu S, Xie M X, et al. Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 2017, 316: 75-84. [13]Amanov A, Umarov R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy[J]. Applied Surface Science, 2018, 441: 515-529. [14]王东生, 田宗军, 王松林, 等. 激光重熔等离子喷涂WC颗粒增强镍基涂层组织及高温磨损性能[J]. 焊接学报, 2012, 33(11): 13-16, 113-114. Wang Dongsheng, Tian Zongjun, Wang Songlin, et al. High temperature wear behavior of WC particles reinforced Ni-based plasma-sprayed coating by laser remelting[J]. Transactions of the China Welding Institution, 2012, 33(11): 13-16, 113-114. [15]韩冰源, 徐文文, 朱 胜, 等. 面向等离子喷涂涂层质量调控的工艺优化方法研究现状[J]. 材料导报, 2021, 35(21): 21105-21112. Han Binyuan, Xu Wenwen, Zhu Sheng, et al. Research on multi-factor parameter optimization methods for quality control of plasma spraying coatings: A review[J]. Materials Reports, 2021, 35(21): 21105-21112. [16]杨效田, 王鹏春, 李 霞, 等. 复合制备Ni基合金涂层的组织结构及性能演变特征[J]. 稀有金属材料与工程, 2017, 46(3): 693-698. Yang Xiaotian, Wang Pengchun, Li Xia, et al. Evolution characteristics of microstructure of Ni-based alloy coatings and their properties under complex process[J]. Rare Metal Materials and Engineering, 2017, 46(3): 693-698. [17]Zhao W D, Liu D X, Qin H F, et al. The effect of ultrasonic nanocrystal surface modification on low temperature nitriding of ultra-high strength steel[J]. Surface and Coatings Technology, 2019, 375: 205-214. [18]Wang P, Guo H, Wang D F, et al. Microstructure and tribological performances of M50 bearing steel processed by ultrasonic surface rolling[J]. Tribology International, 2022, 175: 107818. [19]Meng Y, Deng J, Ge D, et al. Surface textures fabricated by laser and ultrasonic rolling for improving tribological properties of TiAlSiN coatings[J]. Tribology International, 2021, 164: 107248. [20]Jiao F, Lan S, Zhao B, et al. Theoretical calculation and experiment of the surface residual stress in the plane ultrasonic rolling[J]. Journal of Manufacturing Processes, 2020, 50: 573-580. [21]李 礼, 叶 宏, 刘 越, 等. Cr12MoV钢表面激光熔覆Ni/Ni-WC梯度涂层的组织与耐磨性能[J]. 金属热处理, 2021, 46(9): 223-228. Li Li, Ye Hong, Liu Yue, et al. Microstructure and wear resistance of laser clad Ni/Ni-WC gradient coating on Cr12MoV steel[J]. Heat Treatment of Metals, 2021, 46(9): 223-228. [22]Su H, Shen X, Xu C, et al. Surface characteristics and corrosion behavior of TC11 titanium alloy strengthened by ultrasonic roller burnishing at room and medium temperature[J]. Journal of Materials Research and Technology, 2020, 9(4): 8172-8185. [23]Zhang C, Shen X, Wang J, et al. Improving surface properties of Fe-based laser cladding coating deposited on a carbon steel by heat assisted ultrasonic burnishing[J]. Journal of Materials Research and Technology, 2021, 12: 100-116. [24]Zhao X, Liu K, Xu D, et al. Effects of ultrasonic surface rolling processing and subsequent recovery treatment on the wear resistance of AZ91D Mg alloy[J]. Materials, 2020, 13(24): 5705. [25]Liu Y, Wang D P, Deng C Y, et al. Feasibility study on preparation of coatings on Ti-6Al-4V by combined ultrasonic impact treatment and electrospark deposition[J]. Materials and Design, 2014, 63: 488-492. [26]Rai P K, Shekhar S, Mondal K. Effects of grain size gradients on the fretting wear of a specially-processed low carbon steel against AISI E52100 bearing steel[J]. Wear, 2018, 412: 1-13. [27]Dong T, Liu L, Li G, et al. Effect of induction remelting on microstructure and wear resistance of plasma sprayed NiCrBSiNb coatings[J]. Surface and Coatings Technology, 2019, 364: 347-357. [28]Zhang Y, Huang L, Lu F, et al. Effects of ultrasonic surface rolling on fretting wear behaviors of a novel 25CrNi2MoV steel[J]. Materials Letters, 2021, 284: 128955. |