[1]Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511-678. [2]Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials and Design, 2014, 56: 1078-1113. [3]Tong Y, Shuitcev A, Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature[J]. Advanced Engineering Materials, 2020, 22(4): 1900496. [4]Buehler W J, Wang F E. A summary of recent research on the nitinol alloys and their potential application in ocean engineering[J]. Ocean Engineering, 1968, 1(1): 105-120. [5]Dellacorte C, Pepper S V, Noebe R, et al. Nickel-titanium: A new candidate material for oil-lubricated bearing and mechanical component applications[C]//World Tribology Congress 2009, 2009: 353. [6]Dellacorte C. Nickel-Titanium alloys: Corrosion “proof” alloys for space bearing, components and mechanism applications[R]. NASA/TM-2010-216334, NASA Glenn Research Center, Cleveland, 2010. [7]张家华, 肖 飞, 王建中, 等. 航天轴承新贵: 60NiTi 合金[J]. 金属热处理, 2021, 46(6): 1-7. Zhang Jiahua, Xiao Fei, Wang Jianzhong, et al. New material for aerospace bearing: 60NiTi alloy[J]. Heat Treatment of Metals, 2021, 46(6): 1-7. [8]Khanlari K, Ramezani M, Kelly P. 60NiTi: A review of recent research findings, potential for structural and mechanical applications, and areas of continued investigations[J]. Transactions of the Indian Institute of Metals, 2018, 71(4): 781-799. [9]燕 超, 曾群锋, 杨华斌. 新型超弹性轴承材料TiNi60 合金的研究进展[J]. 中国有色金属学报, 2020, 30(5): 1038-1048. Yan Chao, Zeng Qunfeng, Yang Huabin. Research progress of new superelastic bearing material TiNi60 alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(5): 1038-1048. [10]Hornbuckle B C, Noebe R D, Thompson G B. Influence of Hf solute additions on the precipitation and hardenability in Ni-rich NiTi alloys[J]. Journal of Alloys and Compounds, 2015, 640: 449-454. [11]Chen H, Zheng L J, Zhang F X, et al. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition[J]. Materials Science and Engineering: A, 2017, 708: 514-522. [12]Zhang F, Zheng L, Wang F, et al. Effects of Nb additions on the precipitate morphology and hardening behavior of Ni-rich Ni55Ti45 alloys[J]. Journal of Alloys and Compounds, 2018, 735: 2453-2461. [13]Yuan K J, Wang Y, Zheng L J, et al. Microstructural evolution, mechanical properties, and oxidation performance of highly Ni-rich NiTi alloys with added V using vacuum arc melting[J]. Journal of Alloys and Compounds, 2021, 877: 160263. [14]Tong Y X, Liu J X, Sun S B, et al. Unusual precipitation and its hardness enhancement in Fe-alloyed 60NiTi alloy[J]. Materials Letters, 2022, 329: 133170. [15]Fan G L, Chen W, Yang S, et al. Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys[J]. Acta Materialia, 2004, 52(14): 4351-4362. [16]Wang X, Kustov S, Li K, et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti-50.8at.%Ni alloy with micron-sized grains[J]. Acta Materialia, 2015, 82: 224-233. [17]Nishida M, Wayman C M, Kainuma R, et al. Further electron microscopy studies of the Ti11Ni14 phase in an aged Ti-52at.%Ni shape memory alloy[J]. Scripta Metallurgica, 1986, 20(6): 899-904. [18]Saburi T, Nenno S, Fukuda T. Crystal Structure and morphology of the metastable X phase in shape memory Ti-Ni alloys[J]. Journal of the Less-Common Metals, 1986, 125: 157-166. [19]Hara T, Ohba T, Otsuka K, et al. Phase transformation and crystal structures of Ti2Ni3 precipitates in TiNi alloys[J]. Materials Transactions, JIM, 1997, 38(4): 277-284. [20]Taylor A, Floyo R W. Precision measurements of lattice parameters of Non-cubic crystals[J]. Acta Crystallographica, 1950, 3: 285-289. [21]Adharapurapu R R. Phase transformations in nickel-rich nickel-titanium alloys: Influence of strain-rate, temperature, thermomechanical treatment and nickel composition on the shape memory and superelastic characteristics[D]. San Diego: University of California, 2007. [22]Hornbuckle B C, Yu X X, Noebe R D, et al. Hardening behavior and phase decomposition in very Ni-rich Nitinol alloys[J]. Materials Science and Engineering A, 2015, 639: 336-344. [23]Nishida M, Wayman C M, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys[J]. Metallurgical Transactions A, 1986, 17(9): 1505-1515. [24]Zhou J, Wang C, Fu Y C, et al. Study on the microstructure and mechanical properties of 60NiTi alloy quenched by hot oil[J]. Metals, 2022, 12(9): 1513. [25]Xu G X, Zheng L J, Zhang F X, et al. Influence of solution heat treatment on the microstructural evolution and mechanical behavior of 60NiTi[J]. Journal of Alloys and Compounds, 2019, 775: 698-706. [26]杜志伟, 彭永刚, 韩小磊, 等. NiTi40 合金微观组织结构的电子显微学分析[J]. 中国有色金属学报, 2020, 30(3): 587-594. Du Zhiwei, Peng Yonggang, Han Xiaolei, et al. Electron microscopic analysis of microstructure of NiTi40 alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 587-594. [27]Adharapurapu R R, Jiang F, Vecchio K S. Aging effects on hardness and dynamic compressive behavior of Ti-55Ni (at.%) alloy[J]. Materials Science and Engineering A, 2010, 527(7-8): 1665-1676. [28]Waqar S, Wadood A, Mateen A, et al. Effects of Ni and Cr addition on the wear performance of NiTi alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 625-634. [29]Han X D, Wang R, Zhang Z, et al. A new precipitate phase in a TiNiHf high temperature shape memory alloy[J]. Acta Materialia, 1998, 46(1): 273-281. [30]Karaca H E, Saghaian S M, Ded G, et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy[J]. Acta Materialia, 2013, 61(19): 7422-7431. [31]Zhang F, Zheng L, Wang Y, et al. Effect of Ni content and Hf addition on the unlubricated wear performance of Ni-rich NiTi alloys[J]. Intermetallics, 2019, 112: 106548. [32]Mills S H, Noebe R D, Dellacorte C, et al. Development of nickel-rich nickel-titanium-hafnium alloys for tribological applications[J]. Shape Memory and Superelasticity, 2020, 6(3): 311-322. [33]Khanlari K, Shi Q, Li K, et al. Development of hardening treatments for 58Ni39Ti-3Hf alloy system as compared to baseline 60NiTi[J]. Intermetallics, 2021, 137: 107282. [34]Yang F, Coughlin D R, Phillips P J, et al. Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy[J]. Acta Materialia, 2013, 61(9): 3335-3346. [35]Zhang F, Zheng L, Wang F, et al. Effects of Hf additions on the microstructures and mechanical properties of Ni-rich Ni55Ti45 alloys[J]. Materials Science and Engineering A, 2021, 815: 141263. [36]Mills S H, Dellacorte C, Noebe R D, et al. Heat treatment-microstructure-hardness relationships of new nickel-rich nickel-titanium-hafnium alloys developed for tribological applications[J]. Materialia, 2021, 16: 101064. [37]Benefan O, Grag A, Noebe R D, et al. Deformation characteristics of the intermetallic alloy 60NiTi[J]. Intermetallics, 2017, 82: 40-52. [38]Kaya I. Shape memory and transformation behavior of high strength 60NiTi in compression[J]. Smart Materials and Structures, 2016, 25(12): 125031. [39]Casalena L, Bucsek A N, Pagan D C, et al. Structure-property relationships of a high strength superelastic NiTi-1Hf alloy[J]. Advanced Engineering Materials, 2018, 20(9): 1800046. [40]Li B, Xu G X, Zheng L J, et al. Dependence of microstructure and mechanical properties of 60NiTi alloy on aging conditions[J]. Materials Science and Engineering A, 2022, 840: 142903. [41]Liu R, Li D Y. Modification of Archard’s equation by taking account of elastic/pseudoelastic properties of materials[J]. Wear, 2001, 251(1): 956-964. [42]Li D Y. A new type of wear-resistant material: Pseudo-elastic TiNi alloy[J]. Wear, 1998, 221(2): 116-123. [43]Lin H C, Wu S K, Yeh C H. A comparison of slurry erosion characteristics of TiNi shape memory alloys and SUS304 stainless steel[J]. Wear, 2001, 249(7): 557-565. [44]Zeng Q F, Zhao X M, Dong G N, et al. Lubrication properties of Nitinol 60 alloy used as high-speed rolling bearing and numerical simulation of flow pattern of oil-air lubrication[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2012, 22(10): 2431-2438. [45]Liu J X, Sun S B, Chen F, et al. High temperature wear behavior of Ni-rich NiTi-based alloys[J]. Journal of Materials Research and Technology, 2022, 20: 440-447. [46]Nasehi J, Ghasemi H M, Abedini M. Effects of aging treatments on the high-temperature wear behavior of 60Nitinol alloy[J]. Tribology Transactions, 2016, 59(2): 286-291. [47]Khanlari K, Ramezani M, Kelly P, et al. Comparison of the reciprocating sliding wear of 58Ni39Ti-3Hf alloy and baseline 60NiTi[J]. Wear, 2018, 408-409: 120-130. [48]Khanlari K, Ramezani M, Kelly P, et al. Reciprocating sliding wear behavior of 60NiTi as compared to 440C steel under lubricated and unlubricated conditions[J]. Tribology Transactions, 2018, 61(6): 991-1002. [49]Khanlari K, Ramezani M, Kelly P, et al. An investigation on reasons causing inferiority in unlubricated sliding wear performance of 60NiTi as compared to 440C steel[J]. Tribology Transactions, 2019, 62(1): 96-109. [50]Zeng Q, Dong G. Influence of load and sliding speed on super-low friction of nitinol 60 alloy under castor oil lubrication[J]. Tribology Letters, 2013, 52(1): 47-55. [51]Zeng Q F, Dong G N. Superlubricity behaviors of Nitinol 60 alloy under oil lubrication[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2014, 24(2): 354-359. [52]Walters N, Martini A. Friction dependence on surface roughness for castor oil lubricated NiTi alloy sliding on steel[J]. Tribology Transactions, 2018, 61(6): 1162-1166. [53]Yan C, Zeng Q, Hao Y, et al. Friction-induced hardening behaviors and tribological properties of 60NiTi alloy lubricated by lithium grease containing nano-BN and MoS2[J]. Tribology Transactions, 2019, 62(5): 812-820. [54]Robin A, Meirelis J P. Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva[J]. Journal of Applied Electrochemistry, 2007, 37(4): 511-517. [55]Qin Q, Wen Y, Wang G, et al. Effects of solution and aging treatments on corrosion resistance of as-cast 60NiTi alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(12): 5167-5172. [56]Zhang L, Peng H, Qin Q, et al. Effects of annealing on hardness and corrosion resistance of 60NiTi film deposited by magnetron sputtering[J]. Journal of Alloys and Compounds, 2018, 746: 45-53. [57]Guo F, Shen H, Xiong Z, et al. Selective laser melting of 60NiTi alloy with superior wear resistance[J]. Metals, 2022, 12(4): 620. [58]Mills S H, Dellacorte C, Noebe R D, et al. Rolling contact fatigue deformation mechanisms of nickel-rich nickel-titanium-hafnium alloys[J]. Acta Materialia, 2021, 209: 116784. [59]Zhou Y, Chen Z, Hu Z, et al. Tribological performance of hydrogenated diamond-like carbon coating deposited on superelastic 60NiTi alloy for aviation self-lubricating spherical plain bearings[J]. Chinese Journal of Aeronautics, 2022, 35(12): 309-320. |