[1]Nathalie Ochoa, Carlos Vega, Nadine Pébère, et al. CO2 corrosion resistance of carbon steel in relation with microstructure changes[J]. Materials Chemistry and Physics, 2015, 156: 198-205. [2]车马俊, 周生璇, 杜晓洁, 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响[J]. 金属热处理, 2022, 47(10): 147-153. Che Majun, Zhou Shengxuan, Du Xiaojie, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel[J]. Heat Treatment of Metals, 2022, 47(10): 147-153. [3]张 琪, 罗丽蓉, 刘 涛, 等. 船舶海水管系TC4钛合金的表面涂层与耐蚀性能[J]. 金属热处理, 2019, 44(1): 185-189. Zhang Qi, Luo Lirong, Liu Tao, et al. Surface coatings and corrosion resistance of TC4 titanium alloy in marine tube system for ships[J]. Heat Treatment of Metals, 2019, 44(1): 185-189. [4]Chen B Q, Zhang X H, Guedes Soares C. The effect of general and localized corrosions on the collapse pressure of subsea pipelines[J]. Ocean Engineering, 2022, 247: 110719. [5]Fu G Q, Zhu M Y, Gao X L. Rust layer formed on low carbon weathering steels with different Mn, Ni contents in environment containing chloride ions[J]. Materials Science, 2016, 22(4): 501-505. [6]王子豪, 黄运华, 李 佳, 等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610. Wang Zihao, Huang Yunhua, Li Jia, et al. Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments[J]. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 604-610. [7]闫治坤, 陈海涛, 郎宇平, 等. Nb对00Cr21Ni6Mn9N不锈钢显微组织和晶间腐蚀敏感性的影响[J]. 金属热处理, 2022, 47(9): 240-244. Yan Zhikun, Chen Haitao, Lang Yuping, et al. Effect of Nb on microstructure and intergranular corrosion sensitivity of 00Cr21Ni6Mn9N stainless steel[J]. Heat Treatment of Metals, 2022, 47(9): 240-244. [8]柯 伟, 董俊华. Mn-Cu 钢大气腐蚀锈层演化规律及其耐候性的研究[J]. 金属学报, 2010(11): 1365-1378. Ke Wei, Dong Junhua. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel[J]. Acta Metallurgica Sinica, 2010, 46(11): 1365-1378. [9]Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion science, 2009, 51: 997-1006. [10]Zhang F, Pan J S, Lin C J. et al. Localized corrosion behavior of reinforcement steel in simulated concrete pore solution[J]. Corrosion Science, 2009, 5, 2130-2138. [11]Koo J Y, Luton M J, Bangaru N V, et al. Metallurgical design of ultra high-strength steels for gas pipelines[J]. International Journal of Offshore and Polar Engineering, 2004, 14(1): 2-10. [12]Tian H C, Cheng X Q, Wang Y, et al. Effect of Mo on interaction between α/γ phases of duplex stainless steel[J]. Electrochimica Acta, 2018, 267: 255-268. [13]Li C, Xiang Y, Li W G. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: Inhibition effect of SO2 impurity[J]. Electrochimica Acta, 2019, 321: 134603. [14]张晓诚, 林 海, 谢 涛, 等. 含铬油套管钢材在CO2和微量H2S共存环境中的腐蚀规律[J]. 表面技术, 2022, 51(9): 197-205. Zhang Xiaocheng, Lin Hai, Xie Tao, et al. Corrosion law of oil casing steel containing Cr in CO2 and trace H2S environment[J]. Surface Technology, 2022, 51(9): 197-205. [15]Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments[J]. Materials Science and Engineering A, 2018, 710: 318-328. [16]Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni2.4wt%-Cu0.5wt%-Cr0.5wt% weathering steel exposed in marine atmospheres[J]. Corrosion Science, 2014, 87: 438-451. [17]Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere[J]. Applied Surface Science, 2018, 436: 80-89. |