[1]王开国, 李嘉荣, 曹春晓. 单晶高温合金蠕变行为研究现状[J]. 材料工程, 2004, 32(1): 3-7, 11. Wang Kaiguo, Li Jiarong, Cao Chunxiao. Present situation of study on creep behavior of single crystal superalloys[J]. Journal of Materials Engineering, 2004, 32(1): 3-7, 11. [2]胡壮麒, 刘丽荣, 金 涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005(3): 1-7. Hu Zhuangqi, Liu Lirong, Jin Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005(3): 1-7. [3]王开国, 李嘉荣, 刘世忠, 等. DD6单晶高温合金760 ℃的蠕变性能研究[J]. 材料工程, 2004, 32(5): 7-11. Wang Kaiguo, Li Jiarong, Liu Shizhong, et al. Study on creep properties of single crystal superalloy DD6 at 760 ℃[J]. Journal of Materials Engineering, 2004, 32(5): 7-11. [4]Luo Liang, Xiao Chengbo, Chen Jingyang, et al. Effect of directional solidification process on microstructure and stress rupture property of a hot corrosion resistant single crystal superalloy[J]. China Foundry, 2019, 16(1): 8-13. [5]肖程波, 李 青, 唐定中, 等. 北京航空材料研究院在重型燃气轮机叶片材料和工艺方面的研究进展[J]. 新材料产业, 2009(11): 22-24. [6]陈晶阳, 李 青, 肖程波, 等. 第二代耐热腐蚀镍基单晶高温合金DD489及其典型性能[J]. 金属热处理, 2019, 44(6): 65-68. Chen Jingyang, Li Qing, Xiao Chengbo, et al. The second generation hot corrosion resistant Ni-based single crystal superalloy DD489 and its typical properties[J]. Heat Treatment of Metals, 2019, 44(6): 65-68. [7]任英磊, 金 涛, 管恒荣, 等. 一种镍基单晶合金高温长期时效后的组织与力学性能[J]. 材料工程, 2004(2): 14-17. Ren Yinglei, Jin Tao, Guan Hengrong, et al. Microstructure and mechanical properties of a nickel base single crystal alloy long term aged at high temperature[J]. Journal of Materials Engineering, 2004(2): 14-17. [8]韩凤奎, 燕 平, 赵京晨, 等. 长期时效对 DD407单晶高温合金组织和中温性能的影响[J]. 钢铁研究学报, 2011, 23(9): 55-58. Han Fengkui, Yan Ping, Zhao Jingchen, et al. Effect of long-term aging on microstructure and medium temperature performance of single crystal superalloy DD407[J]. Journal of Iron and Steel Research, 2011, 23(9): 55-58. [9]李 辉, 楼琅洪, 史学军, 等. DZ411(DSM11)合金γ′粗化与持久性能[C]//动力与能源用高温结构材料: 第十一届中国高温合金年会论文集. 北京: 冶金工业出版社, 2012: 392-394. [10]崔金艳, 张建庭, 尧 健. 定向凝固高温合金组织演变对持久性能的影响[J]. 稀有金属材料与工程, 2021, 50(7): 2568-2576. Cui Jinyan, Zhang Jianting, Yao Jian. Effects of microstructural evolution of directionally solidified superalloy on stress rupture property[J]. Rare Metal Materials and Engineering, 2021, 50(7): 2568-2576. [11]Müller L, Glatzel U, Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γ′ phase[J]. Acta Metallurgica et Materialia, 1992, 40(6): 1321-1327. [12]Glatzel U, Feller-Kniepmeier M. Calculations of internal stresses in the γ/γ′ microstructure of a nickel-base superalloy with high volume fraction of γ′-phase[J]. Scripta Metallurgica, 1989, 23(11): 1839-1844. [13]唐文书, 肖俊峰, 张 炯, 等. 服役透平叶片GTD111 DS合金再热恢复研究[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 76-81. Tang Wenshu, Xiao Junfeng, Zhang Jiong, et al. Re-heat rejuvenation study of directionally solidified GTD111 DS superalloy inservice damaged gas turbine blades[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(3): 76-81. [14]温 莹, 田高峰, 刘国权, 等. 镍基粉末高温合金中γ′相的形貌特征的定量表征研究[J]. 中国体视学与图像分析, 2007(3): 162-166. Wen Ying, Tian Gaofeng, Liu Guoquan, et al. Morphology characterization of γ′ phase in a P/M nickel-base superalloy[J]. Chinese Journal of Stereology and Image Analysis, 2007(3): 162-166. [15]黄太文, 卢 晶, 许 瑶, 等. Re和Ta对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436. Huang Taiwen, Lu Jing, Xu Yao, et al. Effects of rhenium and tantalum on microstructural stability of hot-corrosion resistant single crystal superalloys aged at 900 ℃[J]. Acta Metallurgica Sinica, 2019, 55(11): 1427-1436. [16]夏鹏成, 禹文芳, 于金江, 等. 长期时效对DZ951合金γ′相的影响[J]. 材料工程, 2007(12): 8-11. Xia Pengcheng, Yu Wenfang, Yu Jinjiang, et al. Influence of long-term thermal exposure on γ′ phase of DZ951 alloy[J]. Journal of Materials Engineering, 2007(12): 8-11. [17]刘 刚, 刘 林, 张胜霞, 等. Re和Ru对镍基单晶高温合金组织偏析的影响[J]. 金属学报, 2012, 48(7): 845-852. Liu Gang, Liu Lin, Zhang Shengxia, et al. Effects of Re and Ru on microstructure and segregation of Ni-based single-crystal superalloys[J]. Acta Metallurgica Sinica, 2012, 48(7): 845-852. [18]Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro and microstructure of nickel base superalloy CMSX-4[J]. Materials Science and Engineering A, 1998, 248(1/2): 87-97. [19]王建明, 李晓桥, 才庆魁. 镍基单晶高温合金γ和γ′相合金元素分布特征[J]. 铸造, 2005, 54(5): 466-469. Song Tijie, Wang Changyu, Wang Jue, et al. Effect of thermal exposure on microstructure and mechanical properties of Ti55 alloy [J]. Heat Treatment of Metals, 2024, 49(1): 15-21. Wang Jianming, Li Xiaoqiao, Cai Qingkui. Characteristics of element distribution in γ and γ′ phases of nickel-base single crystal superalloy[J]. Foundry, 2005, 54(5): 466-469. [20]Luo Z P, Wu Z T, Miller D J. The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture[J]. Materials Science and Engineering A, 2003, 354(1-2): 358-368. [21]马亚鑫, 陈晓辉, 门正兴, 等. 镍基定向凝固高温合金高温时效后的微观组织及力学性能[J]. 金属热处理, 2017, 42(9): 106-110. Ma Yaxin, Chen Xiaohui, Men Zhengxing, et al. Microstructure and mechanical properties of directionally solidified nickel-base superalloy after high temperature aging[J]. Heat Treatment of Metals, 2017, 42(9): 106-110. [22]胡壮麒, 彭 平, 刘 轶, 等. 镍基合金中γ′相界面的强化设计[J]. 金属学报, 2002(11): 1121-1126. Hu Zhuangqi, Peng Ping, Liu Yi, et al. Design of γ′ phase interface strengthening of nickel-base superalloy[J]. Acta Metallurgica Sinica, 2002(11): 1121-1126. [23]Watanaba R, Kuno T. Alloy design of nickel-base precipitation hardened superalloys[J]. Journal of Iron and Steel Research, 1975, 61(9): 2274-2294. |