[1]刘云旭. 低碳合金钢中带状组织的成因、危害和消除[J]. 金属热处理, 2000, 25(12): 1-3. Liu Yunxu. Reason of formation, harmful effect and removal of band structure in low carbon alloy steels[J]. Heat Treatment of Metals, 2000, 25(12): 1-3. [2]蒋丽红, 田乃媛. 弹簧钢连铸坯中心偏析的研究[J]. 钢铁, 2010, 45(1): 43-45. Jiang Lihong, Tian Naiyuan. Study of centerline segregation in spring steels bloom[J]. Iron and Steels, 2010, 45(1): 43-45. [3]杨 武, 陶红标, 赵 沛, 等. 弹簧钢轧制过程方坯凝固组织及偏析的遗传性研究[J]. 钢铁, 2010, 45(9): 32-35. Yang Wu, Tao Hongbiao, Zhao Pei, et al. Heredity of solidification structure and segregation of spring steels billet rolled[J]. Iron and Steels, 2010, 45(9): 32-35. [4]姚耔杉, 胡海江, 田俊羽, 等. 铬和铝元素对低碳贝氏体钢组织和性能影响[J]. 钢铁, 2020, 55(12): 66-71, 80. Yao Zishan, Hu Haijiang, Tian Junyu, et al. Effect of Cr and Al on microstructure and properties of low carbon bainitic steels[J]. Iron and Steels, 2020, 55(12): 66-71, 80. [5]Franceschi M, Bertolini R, Fabrizi A, et al. Effect of ausforming temperature on bainite morphology in a 3.2%Si carbide-free bainitic steels[J]. Materials Science and Engineering A, 2023, 864: 144553. [6]Gupta S K, Manna R, Chattopadhyay K. Ductilization of high carbon, high silicon carbide-free nanostructured bainitic steels[J]. Materials Science and Engineering A, 2022, 860: 144318. [7]陆明和, 田玉新, 蔡海燕, 等. 高温均匀化退火对H13钢芯棒带状偏析和冲击性能的影响[J]. 金属热处理, 2010, 35(8): 9-14. Lu Minghe, Tian Yuxin, Cai Haiyan, et al. Effect of high-temperature homogenization on banded segregation and impact toughness of H13 steels mandrel[J]. Heat Treatment of Metals, 2010, 35(8): 9-14. [8]Goulas C, Mecozzi M G, Sietsma J. Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation[J]. Metallurgical and Materials Transactions A, 2016, 47(6): 3077-3087. [9]Abraham Mathews J, Sietsma J, Petrov R H, et al. Influence of chemical segregation on bainitic microstructures in a carburized bearing steels[J]. Materials and Design, 2022, 223: 111232. [10]Zhang R J, Zheng C L, Bo L, et al. In-situ investigation of composition segregation and deformation streamline in bainitic steels on mechanical properties[J]. Materials Science and Engineering A, 2022, 855: 143949. [11]Hu H, Xu G, Nabeel M, et al. In situ study on interrupted growth behavior and crystallography of bainite[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 817-825. [12]李殿杰, 贾书君, 胡日荣, 等. Nb对抗大变形管线钢铁素体相变的影响[J]. 金属热处理, 2017, 42(6): 161-165. Li Dianjie, Jia Shujun, Hu Rirong, et al. Effect of niobium on ferrite transformation of high-strain pipeline steels[J]. Heat Treatment of Metals, 2017, 42(6): 161-165. [13]Zhao X, Yang Z, Zheng C, et al. In situ observation of bainitic transformation behavior in medium carbon bainitic steels[J]. Journal of Materials Research and Technology, 2022, 21: 330-338. [14]陈连生, 胡宝佳, 董福涛, 等. 含Cu低碳钢CCT曲线及马氏体相变原位观察[J]. 金属热处理. 2017, 42(6): 13-17. Chen Liansheng, Hu Baojia, Dong Futao, et al. Continuous cooling transformation curve of Cu bearing low carbon steels and in-situ observation of its martensitic transformation[J]. Heat Treatment of Metals, 2017, 42(6): 13-17. [15]De A K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steels by X-ray diffraction[J]. Scripta Materialia, 2004, 50(12): 1445-1449. [16]Hajyakbary F, Sietsma J, Bttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Materials Science and Engineering A, 2015, 639: 208-218. [17]Han X, Hou J, Zhang Z, et al. Bainite kinetic energy, activation energy, and tribological behavior of austempered AISI4340 steels[J]. Journal of Materials Research and Technology, 2021, 14: 1473-1481. [18]王国承, 王铁明, 尚德礼, 等. 超细第二相粒子强化钢铁材料的研究进展[J]. 钢铁研究学报, 2007, 19(6): 5-8. Wang Guocheng, Wang Tieming, Shang Deli, et al. Progress of strengthened steels with superfine second phase particle[J]. Journal of Iron and Steels Research, 2007, 19(6): 5-8. [19]王占花, 惠卫军, 陈 祯, 等. 钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响[J]. 材料导报, 2020, 34(18): 18145-18151, 18158. Wang Zhanhua, Hui Weijun, Chen Zhen, et al. Effects of vanadium and austenitizing temperature on continuous cooling transformation behavior of Mn-Cr type bainitic forging steels[J]. Materials Reports, 2020, 34(18): 18145-18151, 18158. [20]杨飞飞, 张忠铧, 刘华松, 等. 高强度油井管用钢带状偏析及其条带型混晶现象研究[J]. 钢铁研究学报, 2021, 33(9): 979-986. Yang Feifei, Zhang Zhonghua, Liu Huasong, et al. Banded segregation and its related band-typed mixed grain structure in high strength oil well pipe steels[J]. Journal of Iron and Steels Research, 2021, 33(9): 979-986. [21]杨才福, 张永权. 钒氮微合金化技术在HSLA钢中的应用[J]. 钢铁, 2002, 37(11): 42-47. Yang Caifu, Zhang Yongquan. Applications of V-N microalloying technology in HSLA steels[J]. Iron and Steels, 2002, 37(11): 42-47. [22]Bhadeshia H K D H. 钢中贝氏体: 理论与实践[M]. 张福成, 杨志南, 译. 3版. 秦皇岛: 燕山大学出版社, 2020. [23]Ostermayer P, Allam Tarek, Shen Xiao, et al. Effect of retained austenite on the fatigue behavior of modified bainitic 100Cr6 steels considering local phase transformation[J]. Materials Science and Engineering A, 2023, 877: 145204. [24]Siqian Y D G H X. Effect of microstructure morphology of Q&P steel on carbon and manganese partitioning and stability of retained austenite[J]. Metals, 2022, 12(10): 1613. |