[1]彭学艺, 王 杨, 郑宏伟, 等. 汽车紧固件用SCM435盘条工艺开发[J]. 热处理技术与装备, 2021, 42(4): 19-22. Peng Xueyi, Wang Yang, Zheng Hongwei, et al. Process development of SCM435 wire rod for automotive fasteners[J]. Heat Treatment Technology and Equipment, 2021, 42(4): 19-22. [2]王 利. 球化退火组织对 SCM435螺栓性能的影响[J]. 热处理技术与装备, 2017, 38(2): 19-22. Wang Li. Effect of spheroidizing annealing microstructure on the properties of SCM435 bolt[J]. Heat Treatment Technology and Equipment, 2017, 38(2): 19-22. [3]陈继林, 冯光宏, 马洪磊, 等. Cr-Mo 微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198. Chen Jilin, Feng Guanghong, Ma Honglei, et al. Microstructure, mechanical properties and strengthening mechanism of Cr-Mo microalloy cold heading steel[J]. Acta Metallurgica Sinica, 2022, 58(9): 1189-1198. [4]王利军, 吕彦新, 阮士朋, 等. 初始组织对 SCM435 钢调质处理后力学性能的影响[J]. 材料热处理学报, 2019, 40(6): 117-122. Wang Lijun, Lü Yanxin, Ruan Shipeng, et al. Effect of initial microstructure on mechanical properties of SCM435 steel after quenching and tempering[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 117-122. [5]鲁修宇, 夏艳花, 周 勇, 等. 我国汽车紧固件的现状及发展[J]. 热处理技术与装备, 2015, 36(6): 76-80. Lu Xiuyu, Xia Yanhua, Zhou Yong, et al. Present situation and development of Chinese automotive fasteners[J]. Heat Treatment Technology and Equipment, 2015, 36(6): 76-80. [6]孙浩然. 汽车紧固件用钢的发展动向[J]. 中国冶金, 2011, 21(7): 7-9, 36. Sun Haoran. Review on the fastener steels for automobiles[J]. China Metallurgy, 2011, 21(7): 7-9, 36. [7]黄元春, 王三星, 肖政兵, 等. 不同条件高温压缩变形后35CrMo钢的显微组织[J]. 机械工程材料, 2017, 41(6): 84-89. Huang Yuanchun, Wang Sanxing, Xiao Zhengbing, et al. Microstructures of 35CrMo steel after high-temperature compression deformation under different conditions[J]. Materials for Mechanical Engineering, 2017, 41(6): 84-89. [8]Zhu S, Zhen X, Wang G, et al. Effect of SCM435 initial microstructure and annealing process on spheroidization grade and properties[J]. Vibroengineering Procedia, 2023, 48: 61-66. [9]南鹏飞, 王福明, 刘振民, 等. SCM435 冷镦钢的球化退火工艺[J]. 金属热处理, 2016, 41(11): 92-97. Nan Pengfei, Wang Fuming, Liu Zhenmin, et al. Spheroidizing annealing of SCM435 cold heading steel[J]. Heat Treatment of Metals, 2016, 41(11): 92-97. [10]肖红亮, 张慧杰. SCM435钢的高温相变[J]. 金属热处理, 2017, 42(3): 147-150. Xiao Hongliang, Zhang Huijie. High temperature phase transformation behavior of SCM435 steel[J]. Heat Treatment of Metals, 2017, 42(3): 147-150. [11]Yang H, Yu W, Chang W G, et al. Accelerated transformation of hot deformed austenite in SCM435 steel[J]. Materials Science Forum, 2020, 993: 541-549. [12]吴晋彬, 刘国权, 王 浩, 等. SCM435钢热变形动态再结晶动力学模型参数的确定[J]. 北京科技大学学报, 2010, 32(10): 1282-1286. Wu Jinbin, Liu Guoquan, Wang Hao, et al. Parameters determination of the dynamic recrystallization kinetics model for SCM435 steel during hot compressive deformation[J]. Journal of University of Science and Technology Beijing, 2010, 32(10): 1282-1286. [13]Li W, Huang Y, Xiao Z. Rheological behavior under hot compression and the constitutive model of 35CrMo wteel[J]. International Journal of Simulation—Systems, Science and Technology, 2016, 17(10): 19. [14]Wang S, Huang Y, Xiao Z, et al. A modified Johnson-Cook model for hot deformation behavior of 35CrMo steel[J]. Metals, 2017, 7(9): 337. [15]朱晓宁, 潘 晴, 李毅波, 等. 316LN奥氏体不锈钢的高温流变行为与本构模型[J]. 金属热处理, 2021, 46(11): 9-16. Zhu Xiaoning, Pan Qing, Li Yibo, et al. High temperature rheological behavior and constitutive model of 316LN austenitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(11): 9-16. [16]倪 炀, 蔡玉俊, 董晓传, 等. 7075合金高温力学性能及本构方程研究[J]. 塑性工程学报, 2020, 27(2): 128-134. Ni Yang, Cai Yujun, Dong Xiaochuan, et al. Study on high temperature mechanical properties and constitutive equation of 7075 aluminum alloy[J]. Journal of Plasticity Engineering, 2020, 27(2): 128-134. [17]Zhang W F, Li X L, Sha W, et al. Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel[J]. Materials Science and Engineering A, 2014, 590: 199-208. [18]王立民, 张 红, 刘 宁, 等. 高合金马氏体耐热钢的热变形表观激活能[J]. 材料热处理学报, 2012, 33(2): 44-49. Wang Limin, Zhang Hong, Liu Ning, et al. Apparent activation energy for hot working of high-alloy martensitic heat-resistant steels[J]. Transactions of Materials and Heat Treatment, 2012, 33(2): 44-49. [19]王庆娟, 党 雪, 杜忠泽, 等. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 251-258. Wang Qingjuan, Dang Xue, Du Zhongze, et al. Study on high-temperature flow behavior and deformation mechanism of B92SiQL steel[J]. Materials Reports, 2023, 37(21): 251-258. [20]Wang M J, Sun C Y, Fu M W, et al. Experimental investigations and constitutive modeling of the dynamic recrystallization behavior of Inconel 740 superalloy[J]. Materials Science and Engineering A, 2020, 793: 139939. |