[1]姜长泽, 亢淑梅, 张思悦, 等. 液化天然气储罐用高锰钢应用研究进展[J]. 科学与信息化, 2022(24): 127-129. Jiang Changze, Kang Shumei, Zhang Siyue, et al. Research progress on application of high manganese steel for liquefied natural gas storage tanks[J]. Technology and Information, 2022(24): 127-129. [2]陈亚魁, 王红鸿, 孟 亮, 等. 超低温高锰钢埋弧焊焊缝金属微观组织及冲击韧性分析[J]. 武汉科技大学学报, 2020, 43(5): 1-4. Chen Yakui, Wang Honghong, Meng Liang, et al. Microstructure and impact toughness of submerged-arc deposited metal for cryogenic high manganese steel[J]. Journal of Wuhan University of Science and Technology, 2020, 43(5): 1-4. [3]Choi Myeonghwan, Lee Junghoon, Nam Hyunbin. Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications[J]. Metals and Materials International, 2020, 26(2): 240-247. [4]付瑞东, 李亮玉, 郑炀曾. 高锰奥氏体超低温钢焊接接头的组织和力学性能[J]. 焊接学报, 2001, 22(3): 21-24. Fu Ruidong, Li Liangyu, Zheng Yangzeng. TIG welding of high manganese austenitic steel for super cryogenic application[J]. Transactions of the China Welding Institution, 2001, 22(3): 21-24. [5]An G, Park J, Park H, et al. Fracture toughness characteristics of high manganese austenitic steel plate for application in a liquefied natural gas carrier[J]. Metals, 2021, 11(12): 2047. [6]孙淑侠. LNG低温高锰奥氏体钢材料应用研究概述[J]. 武汉船舶职业技术学院学报, 2021, 20(4): 144-148. Sun Shuxia. Application of LNG low temperature high manganese austenitic steel[J]. Wuhan Institue of Shipbuilding Technology, 2021, 20(4): 144-148. [7]李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493. Li Yizhuang, Huang Mingxin. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction[J]. Acta Metallurgica Sinica, 2020, 56(4): 487-493. [8]Williamson G K, Hall W H. X-ray line broadening from filedaluminium and wolfram[J]. Acta Metallurgica, 1953, 1(1): 22-31. [9]胡赓祥, 蔡 珣. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000. [10]Gumus B, Bal B, Gerstein G, et al. Twinning activities in high-Mn austenitic steels under high-velocity compressive loading[J]. Materials Science and Engineering A, 2015, 648(11): 104-112. [11]严伟林, 方 亮, 郑战光. 高锰钢加工硬化[J]. 铸造技术, 2008, 29(11): 1468-1472. Yan Weilin, Fang Liang, Zheng Zhanguang. Work hardening of high manganese steel[J]. Foundry Technology, 2008, 29(11): 1468-1472. [12]王杨文, 罗 强, 孟 亮, 等. Mn-Cr-C系TWIP钢的孪生演变及强化机制[J]. 上海金属, 2021, 43(3): 53-57. Wang Yangwen, Luo Qiang, Meng Liang, et al. Twinning evolution and strengthening mechanisms of Mn-Cr-C TWIP steel[J]. Shanghai Metals, 2021, 43(3): 53-57. [13]陈 欢, 孙新军, 王小江, 等. 高锰奥氏体低温钢力学性能及Hall-Petch关系的研究[J]. 材料科学与工艺, 2018, 26(5): 11-18. Chen Huan, Sun Xinjun, Wang Xiaojiang, et al. Mechanical properties and Hall-Petch relationship of high manganese austenitic cryogenic steel[J]. Materials Science and Technology, 2018, 26(5): 11-18. [14]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. |