[1]方 琴, 陈 庚, 吴永波, 等. 热处理对34CrNiMo6钢组织和力学性能的影响[J]. 铸造技术, 2017, 38(8): 1866-1867. Fang Qing, Chen Geng, Wu Yongbo, et al. Influence of heat treatment on microstructure and mechanical properties of 34CrNiMo6 steel[J]. Foundry Technology, 2017, 38(8): 1866-1867. [2]Shang Shi, Huang Chunping, Liu Fenggang, et al. Effect of heat treatment on microstructure and mechanical properties of 34CrNiMo6 steel by laser solid forming[J]. Journal of Manufacturing Processes, 2022, 78: 308-318. [3]蔡 红, 叶 俭, 王丽莲, 等. 高铁车轴用 34CrNiMo6 钢的热处理工艺[J]. 金属热处理, 2012, 37(4): 95-98. Cai Hong, Ye Jian, Wang Liliang, et al. Heat treatment process of 34CrNiMo6 steel for high-speed railway axle[J]. Heat Treatment of Metals, 2012, 37 (4): 95-98 [4]谢 帅. 高铁车轴用34CrNiMo6钢的热处理工艺研究[J]. 中国设备工程, 2020(22): 14-15. Xie Shuai. Study on heat treatment process of 34CrNiMo6 steel for high-speed railway axle[J]. China Plant Engineering, 2020 (22): 14-15. [5]Aleks Vrcˇek, Tobias Hultqvist, Tomas Johannesson, et al. Micro-pitting and wear characterization for different rolling bearing steels: Effect of hardness and heat treatments[J]. Wear, 2020, 458: 203404. [6]魏世同, 吴长江, 郑雷刚, 等. 表面淬火工艺对大型轴承套圈用42CrMo钢淬硬层的影响[J]. 金属热处理, 2022, 47(10): 218-223. Wei Shitong, Wu Changjiang, Zheng Leigang, et al. Effect of surface quenching process on hardened layer of 42CrMo steel for large bearing ring[J]. Heat Treatment of Metals, 2022, 47(10): 218-223. [7]梁 若, 庞思勤, 程冠华, 等. 34CrNiMo6 钢复合喷丸强化的有限元模拟[J]. 航空制造技术, 2017, 60(10): 99-103. Liang Ruo, Pang Siqin, Cheng Guanhua, et al. Finite element simulation of 34CrNiMo6 steel after dual shot peening[J]. Aeronautical Manufacturing Technology, 2017, 60(10): 99-103. [8]李晓喆. 齿轮渗碳, 渗氮硬化表面耐磨性研究[J]. 中国金属通报, 2018(6): 256-257. Li Xiaozhe. Study on wear resistance of carburized and nitrided hardened gear surfaces[J]. China Metal Bulletin, 2018(6): 256-257. [9]李春红, 伍 强, 李 波, 等. 表面氮化处理718H模具钢的表面组织与磨损性能[J]. 材料保护, 2020, 53(7): 41-60. Li Chunhong, Wu Qiang, Li Bo, et al. Surface structure and wear resistance of 718H die steel treated by nitriding[J]. Materials Protection, 2020, 53(7): 41-60. [10]肖金桐, 王洪林, 李 珉. 表面渗碳 23CrNi3Mo 钢的微观组织及渗碳规律数学模型分析[J]. 铸造技术, 2015, 36(3): 653-654. Xiao Jintong, Wang Honglin, Li Min. Microstructure of surface carburization 23CrNi3Mo steel and analysis on the mathematical model of carburizing law[J]. Foundry Technology, 2015, 36(3): 653-654. [11]张威龙, 郑卫刚. 感应表面淬火在柴油机轴类热处理中的应用[J]. 表面工程资讯, 2013, 13(6): 13-14. Zhang Weilong, Zheng Weigang. Application of induction surface hardening in heat treatment of diesel engine shafts[J]. Surface Engineering and Remanufacturing, 2013, 13(6): 13-14. [12]Fabrice Garcia. Crankshaft fillet hardening: Challenges and prospects[J]. Industrial Heating, 2014(12): 47-48. [13]雷发林, 王春龙. 大型工程机械中心轴表面淬火工艺试验研究[J]. 热加工工艺, 2019, 48(8): 185-188. Lei Falin, Wang Chunlong. Experimental study on surface quenching technology of centra shaft of large-scale construction machinery[J]. Hot Working Technology, 2019, 48(8): 185-188. [14]朱正德. 动力总成曲轴感应淬火表面强化工艺的应用[J]. 金属加工(热加工), 2018(2): 13-16. [15]马静芬, 沈 騛. 曲轴感应淬火开裂应对措施研究[J]. 金属加工(热加工), 2012(S2): 133-135. [16]丁宗旭, 席刚刚. 发动机曲轴感应淬火的工艺改进试验研究[J]. 农业装备与车辆工程, 2022, 60(5): 112-115. Ding Zongxu, Xi Ganggang. Experimental study on process improvement of induction hardening process of engine crankshaft[J]. Agricultural Equipment and Vehicle Engineering, 2022, 60(5): 112-115. [17]李军迎, 陈学富, 杨 钊, 等. 45钢曲轴的感应淬火工艺[J]. 金属热处理, 2013, 38(4): 67-68. Li Junying, Chen Xuefu, Yang Zhao, et al. Induction hardening process of 45 steel crankshaft[J]. Heat Treatment of Metals, 2013, 38(4): 67-68. [18]王会珍, 杨 平, 毛卫民. 板条状马氏体形貌和惯习面的3D EBSD分析[J]. 材料工程, 2013(4): 74-80. Wang Huizhen, Yang Ping, Mao Weimin. 3D EBSD analysis of morphology and habit plane for lath martensite[J]. Journal of Materials Engineering, 2013(4): 74-80. |