[1]王宏宇, 赵玉凤, 许晓静, 等. 热处理对 65Mn 钢表面渗硼层组织和性能的影响[J]. 材料热处理学报, 2012, 33(12): 142-146. Wang Hongyu, Zhao Yufeng, Xu Xiaojing, et al. Effects of heat treatment on microstructure and properties of boriding layer on 65Mn steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(12): 142-146. [2]Korotkov V A, Rastegaev I A, Rastegaeva I I, et al. A study of the wear resistance of chromium cladding by dry friction on steel and an abrasive[J]. Journal of Friction and Wear, 2020, 41(1): 52-57. [3]Li A M, Hu M J. Microstructure and properties of 65Mn steel after austenite inverse phase transformation by sub-temperature quenching[J]. Advanced Materials Research, 2011, 194-196: 89-94. [4]Yuan X M, Wang H Y, Zhao Y F, et al. Process design of strengthening and toughening treatment for 65Mn steel by powder RE-boronizing method under low temperature[J]. Advanced Materials Research, 2014, 941-944: 1414-1419. [5]Dong C J, Zhang J H, Xu J Y, et al. Microstructures and properties of electrical discharge strengthened layers on 65Mn steel[J]. Applied Surface Science, 2011, 257(7): 2843-2849. [6]Yu J M, Zhou H T, Zhang L W, et al. Microstructure and properties of modified layer on the 65Mn steel surface by pulse detonation-plasma technology[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1562-1572. [7]Hafeez M A. Microstructural and mechanical properties of one-step quenched and partitioned 65Mn steel[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2261-2267. [8]Wang H Y, Zhao Y F, Yuan X M, et al. Effects of boronizing treatment on corrosion resistance of 65Mn steel in two acid mediums[J]. Physics Procedia, 2013, 50: 124-130. [9]赵玉凤, 王宏宇, 王 荣, 等. 旋耕刀用65Mn钢表面渗铬工艺优化及其耐磨性研究[J]. 农业化研究, 2012, 34(10): 156-160. Zhao Yufeng, Wang Hongyu, Wang Rong, et al. Study on process optimization of surface chromizing for 65Mn steel used in rotary blade and its wear resistance[J]. Journal of Agricultural Mechanization Research, 2012, 34(10): 156-160. [10]Li H, Kang M, Ndumia J N, et al. Influence of heat treatment on microstructure and properties of high-velocity arc-sprayed Fe-based-Al2O3-B4C coating[J]. Journal of Materials Engineering and Performance, 2022, 31(12): 9878-9887. [11]Yu J M, Zhou H T, Zhang L W, et al. Microstructure and properties of modified layer on the 65Mn steel surface by pulse detonation-plasma technology[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1562-1572. [12]Chen J S, Li Z X, Chu Y J, et al. Microstructure distribution and grain coarsening model of GCr15 steel in the laser surface treatment[J]. Metals and Materials International, 2022, 28(10): 2318-2329. [13]Chen K Y, Yang X F, Li W Y, et al. Study on the wear and corrosion resistance of Fe-Mo coatings on 65Mn steel ploughshares by laser cladding[J]. Applied Physics A, 2022, 128(9): 795. [14]Khomyakov M N, Pinaey P A, Statsenko P A, et al. Laser-plasma surface modification of steels and Fe-based alloys[J]. AIP Conference Proceedings, 2019, 2098(1): 020009. [15]杜成明, 朱锦云, 杨 振, 等. 65Mn弹簧钢表面激光淬火的显微组织及性能研究[J]. 机械工程师, 2020(3): 52-53, 56. Du Chengming, Zhu Jinyun, Yang Zhen, et al. Study on laser quenched surface microstructure and properties of 65Mn spring steel[J]. Mechanical Engineer, 2020(3): 52-53, 56. [16]王宏立. 65Mn钢表面激光熔覆铁基合金组织及摩擦磨损性能[J]. 应用激光, 2016, 36(4): 385-390. Wang Hongli. Microstructure and tribological behavior of iron-based alloy coating on surface of 65Mn steel by laser cladding[J]. Applied Laser, 2016, 36(4): 385-390. [17]Hu L F, Li J, Lü Y H, et al. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition[J]. Rare Metals, 2020, 39(4): 436-447. [18]Liu X B, Meng X J, Liu H Q, et al. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy[J]. Materials and Design, 2014, 55: 404-409. [19]王宏宇, 吴志奎, 袁晓明, 等. 激光辐照对渗硼后65Mn钢组织和性能的影响[J]. 材料热处理学报, 2014, 35(5): 176-180. Wang Hongyu, Wu Zhikui, Yuan Xiaoming, et al. Effects of laser irradiation on microstructure and properties of boronized 65Mn steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(5): 176-180. [20]卢庆亮, 王 静, 戚小霞, 等. 面向盾构机密封跑道修复的激光熔覆Fe基涂层制备工艺[J]. 金属热处理, 2022, 47(1): 202-211. Lu Qingliang, Wang Jing, Qi Xiaoxia, et al. Preparation technology of laser clad Fe-based coating for shield sealing runway repair[J]. Heat Treatment of Metals, 2022, 47(1): 202-211. [21]林基辉, 温亚辉, 范文博, 等. 钛合金表面激光改性技术研究进展[J]. 金属热处理, 2022, 47(3): 215-221. Lin Jihu, Wen Yahui, Fan Wenbo, et al. Research progress of laser modification technology for titanium alloy surface[J]. Heat Treatment of Metals, 2022, 47(3): 215-221. [22]皇甫瑞云, 贺占蜀. 42CrMo钢板移动感应加热温度场数值模拟[J]. 机械设计与制造, 2023(2): 101-105, 111. Huangfu Ruiyun, He Zhanshu. Numerical simulation of moving induction heating temperature field of 42CrMo plate[J]. Machinery Design and Manufacture, 2023(2): 101-105, 111. [23]Bailey N S, Katina S C, Shin Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses[J]. Journal of Materials Processing Technology, 2017, 247: 223-233. [24]Anusha E, Kumar A, Shariff S M. Finite element analysis and experimental validation of high-speed laser surface hardening process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115: 2403-2421. [25]Zhuang S, Kainuma S, Yang M Y, et al. Investigation on the peak temperature and surface defects on the carbon steel treated by rotating CW laser[J]. Optics and Laser Technology, 2021, 135: 106727. [26]Li Z X, Chen J S, Wang X N, et al. Microstructure distribution and bending fracture mechanism of 65Mn steel in the laser surface treatment[J]. Materials Science and Engineering A, 2022, 850: 143568. [27]Saunders N, Guo Z, Li X, et. al. Using JMatPro to model materials properties and behavior[J]. The Journal of the Minerals, 2003, 55: 60-65. [28]李 成, 王玉玲, 姜芙林, 等. 激光功率对超声辅助激光熔覆Al2O3-ZrO2陶瓷力学性能的影响[J]. 金属热处理, 2020, 45(2): 218-224. Li Cheng, Wang Yuling, Jiang Fulin, et al. Effect of laser power on Tang Jiaqi, Xue Yuna, Wang Cankun, et al. Corrosion properties of micro-arc oxidation coating on AZ80 extruded magnesium alloy[J]. Heat Treatment of Metals, 2024, 49(1): 256-261. mechanical properties of ultrasonic assisted laser clad Al2O3-ZrO2 ceramic[J]. Heat Treatment of Metals, 2020, 45(2): 218-224. [29]赵子硕, 武美萍, 缪小进, 等. 激光功率对FeCoNiCrMo高熵合金/氧化石墨烯复合涂层组织及耐腐蚀性能的影响[J]. 金属热处理, 2022, 47(4): 251-257. Zhao Zishuo, Wu Meiping, Miao Xiaojin, et al. Effect of laser power on microstructure and corrosion resistance of FeCoNiCrMo high-entropy alloy/graphene oxide composite coating[J]. Heat Treatment of Metals, 2022, 47(4): 251-257. [30]Bendoumi A, Makuch N, Chegroune R, et al. The effect of temperature distribution and cooling rate on microstructure and microhardness of laser re-melted and laser-borided carbon steels with various carbon concentrations[J]. Surface and Coatings Technology, 2020, 387: 125541. |