[1]张秋敏. 现代车辆新能源与节能减排技术[M]. 北京: 机械工业出版社, 2018. [2]张金玲. 镁合金和铝合金在汽车轻量化上的应用及发展趋势[J]. 科技创新导报, 2019, 16(28): 92-93. [3]Zhang W, Jun X. Advanced lightweight materials for automobiles: A review[J]. Materials and Design, 2022, 221: 110994. [4]Wang D F, Li S H. Material selection decision-making method for multi-material lightweight automotive body driven by performance[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2022, 236(4): 730-746. [5]刘贞山, 李英东, 赵经纬, 等. 汽车轻量化用铝合金材料及应用技术的研究[J]. 中国材料进展, 2022, 41(10): 786-795, 807. Liu Zhenshan, Li Yingdong, Zhao Jingwei, et al. Research on aluminum alloy materials and application technology for automobile lightweight[J]. Materials China, 2022, 41(10): 786-795, 807. [6]胡志力, 芦俊杰, 华 林. 铝合金热冲压技术研究进展[J]. 锻压技术, 2022, 47(2): 1-11. Hu Zhili, Lu Junjie, Hua Lin. Review of hot stamping technology for aluminum alloy[J]. Forging and Stamping Technology, 2022, 47(2): 1-11. [7]武兆洋, 平宪忠, 郑宝超, 等. 不同水基淬火介质对ZG30CrMnSiMo低合金钢组织和耐磨性的影响[J]. 金属热处理, 2021, 46(5): 60-65. Wu Zhaoyang, Ping Xianzhong, Zheng Baochao, et al. Effect of different water-based quenching media on microstructure and wear resistance of ZG30CrMnSiMo low alloy steel[J]. Heat Treatment of Metals, 2021, 46(5): 60-65. [8]李亚斐, 范艳艳, 刘经宇, 等. 不同淬火介质对45钢淬火性能的影响[J]. 热加工工艺, 2017, 46(10): 213-215. Li Yafei, Fan Yanyan, Liu Jingyu, et al. Effect of different quenching media on quenching properties of 45 steel[J]. Hot Working Technology, 2017, 46(10): 213-215. [9]李亚楠, 张永安, 李锡武, 等. 不同淬火介质下7055铝合金厚板淬火内应力测试[J]. 中国有色金属学报, 2017, 27(12): 2467-2472. Li Yanan, Zhang Yongan, Li Xiwu, et al. Quenching residual stress of 7055 aluminum alloy thick plate with various quenching mediums[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12): 2467-2472. [10]黄 华. 淬火介质冷却性能的研究[D]. 大连: 大连交通大学, 2012. [11]江 心, 周亚军, 毛大恒, 等. 淬火介质对35CrMoV钢显微组织及耐磨性能的影响[J]. 热加工工艺, 2019, 48(8): 173-176. Jiang Xin, ZhouYajun, Mao Daheng, et al. Effects of quenching medium on microstructure and wear resistance of 35CrMoV steel[J]. Hot Working Technology, 2019, 48(8): 173-176. [12]刘 辉. 水溶性淬火介质KR9180在弹条扣件淬火中的工艺试验[J]. 金属热处理, 2022, 47(4): 274-276. Liu Hui. Quenching test of water-soluble quenchant KR9180 for spring rod[J]. Heat Treatment of Metals, 2022, 47(4): 274-276. [13]Zhang L, Feng X, Li Z G, et al. FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227(7): 954-964. [14]Yao Z H, Hao J, Dai W B, et al. Effects of quenching medium and tempering temperature on microstructures, mechanical properties, and fatigue behavior of EA4T steel[J]. International Journal of Fatigue, 2022, 165: 107179. [15]Tran T X, Nguyen X P, Nguyen D N, et al. Effect of poly-alkylene-glycol quenchant on the distortion, hardness, and microstructure of 65Mn steel[J]. Computers, Materials and Continua, 2021, 67(3): 3249-3264. [16]陈子银, 杨海峰. 淬火介质对数控刀具5Cr5MoSiV1Sr钢性能的影响[J]. 热加工工艺, 2018, 47(10): 250-253. Chen Ziyin, Yang Haifeng. Effect of quenching medium on properties of 5Cr5MoSiV1Sr steel for NC tool[J]. Hot Working Technology, 2018, 47(10): 250-253. [17]朱志云, 张雪辉, 陈慧玲, 等. 淬火介质对7249铝合金力学性能及晶间腐蚀行为的影响[J]. 材料热处理学报, 2015, 36(1): 47-51. Zhu Zhiyun, Zhang Xuehui, Chen Huiling, et al. Effect of quenching agent on mechanical properties and intergranular corrosion behavior of 7249 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 47-51. [18]Khan M A, Wang Y W, Afifi M A, et al. Microstructure and mechanical properties of an Al-Zn-Cu-Mg alloy processed by hot forming processes followed by heat treatments[J]. Materials Characterization, 2019, 157: 109901. [19]Chen Y, Liu Z Y, Bai S, et al. The effect of multistage aging on mechanical properties and microstructure of forged 7050 aluminum alloys[J]. Journal of Materials Engineering and Performance, 2019, 28(6): 3590-3599. |