[1]姚艳书, 唐殿福, 郭冰峰. 工具钢及其热处理[M]. 沈阳: 辽宁科学技术出版社, 2009. [2]Ferrari M T C, Andersson J, Kvarnstrom M. Influence of lowered austenitisation temperature during hardening on tempering resistance of modified H13 tool steel (Uddeholm Dievar)[J]. International Heat Treatment and Surface Engineering, 2013, 7(3): 129-132. [3]裴悦凯, 马党参, 刘宝石, 等. 锻造比对H13钢组织和力学性能的影响[J]. 钢铁, 2012, 47(2): 81-86. Pei Yuekai, Ma Dangcan, Liu Baoshi, et al. Effect of forging ratio on microstructure and mechanical properties of H13 steel[J]. Iron and Steel, 2012, 47(2): 81-86. [4]林高用, 郑小燕, 冯 迪, 等. 热处理状态对H13模具钢渗氮层的影响[J]. 钢铁, 2008, 43(12): 63-66. Lin Gaoyong, Zheng Xiaoyan, Feng Di, et al. Effect of heat treatment state on nitriding layer of H13 die steel[J]. Iron and Steel, 2008, 43(12): 63-66. [5]李 琳. 热处理工艺对DH350钢组织性能影响规律的研究[D]. 包头: 内蒙古科技大学, 2018. Li Lin. Study on the influence of heat treatment process on microstructure and properties of DH350 steel[D]. Baotou: lnner Mongolia University of Science and Technology, 2018. [6]万 霄, 陈瑞航, 王 颜, 等. 热处理工艺对H13热作模具钢组织与性能的影响[J]. 宽厚板, 2020, 26(5): 18-22. Wan Xiao, Chen Ruihang, Wang Yan, et al. Effect of heat treatment process on microstructure and properties of H13 hot working die steel[J]. Wide and Heavy Plate, 2020, 26(5): 18-22. [7]蔡著文, 李 玲, 沈俞涛, 等. 热处理工艺对4Cr3Mo2Si1V钢组织与性能的影响[J]. 金属热处理, 2022, 47(1): 226-232. Cai Zhuwen, Li Ling, Shen Yutao, et al. Effect of heat treatment process on microstructure and properties of 4Cr3Mo2Si1V steel[J]. Heat Treatment of Metals, 2022, 47(1): 226-232. [8]冯萧萧, 苏 钰, 李 军, 等. 热处理工艺对DIEVAR热作模具钢组织与性能的影响[J]. 金属热处理, 2019, 44(2): 108-112. Feng Xiaoxiao, Su Yu, Li Jun, et al. Influence of heat treatment on microstructure and mechanical properties of DIEVAR hot working die steel[J]. Heat Treatment of Metals, 2019, 44(2): 108-112. [9]Lee K O, Hong S K, Kang Y K, et al. Grain refinement in bearing steels using a double-quenching heat-treatment process[J]. International Journal of Automotive Technology, 2009, 10(6): 697-702. [10]叶卫平. 实用钢铁材料金相检验[M]. 北京: 机械工业出版社, 2012. [11]Li T S, Wang F M, Li C R, et al. Carbide evolution in high molybdenum Nb-microalloyed H13 steel during annealing process[J]. Journal of Iron and Steel Research International, 2015, 22(4): 330-336. [12]陈 刚, 罗小兵, 柴 锋, 等. 两次油冷淬火对HSLA钢组织和冲击性能的影响[J]. 材料研究学报, 2020, 34(9): 705-711. Chen Gang, Luo Xiaobing, Chai Feng, et al. Effect of two quenchings on microstructure and impact toughness of HSLA steel[J]. Chinese Journal of Materials Research, 2020, 34(9): 705-711. [13]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2020. [14]Thompson S W, Col D J V, Krauss G. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel[J]. Metallurgical Transactions A, 1990, 21(6): 1493-1507. [15]夏 晟. 新型热作模具钢4Cr4Mo3Ni5V2N组织与性能研究[D]. 南京: 东南大学, 2020. Xia Sheng. Microstructure and properties of a new type of hot-working die steel 4Cr4Mo3Ni5V2N[D]. Nanjing: Southeast University, 2020. [16]Zhou J, Ma D S, Chi H X, et al. Microstructure and properties of hot working die steel H13MOD[J]. Journal of Iron and Steel Research (International), 2013, 20(9): 117-125. [17]宋雯雯, 闵永安, 吴晓春. H13钢中的碳化物分析及其演变规律研究[J]. 材料热处理学报, 2009, 30(5): 122-126. Song Wenwen, Min Yongan, Wu Xiaochun. Analysis and evolution of carbides in H13 steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(5): 122-126. [18]Michaud P, Delagnes D, Lamesle P, et al. The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels[J]. Acta Materialia, 2007, 55(14): 4877-4889. [19]陈英伟, 吴晓春, 宋雯雯, 等. 含铌热作模具钢中碳化物的演变对热稳定性的影响[J]. 材料热处理学报, 2010, 31(5): 75-80. Chen Yingwei, Wu Xiaochun, Song Wenwen, et al. Influence of carbide evolution on thermal stability in niobium hot working die steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(5): 75-80. [20]李 爽, 时彦林, 杨晓彩, 等. 钼钨钒合金化热作模具钢高温回火组织演变[J]. 工程科学学报, 2020, 42(7): 902-911. Li Shuang, Shi Yanlin, Yang Xiaocai, et al. Microstructure evolution of molybdenum-tungsten-vanadium alloying hot work die steel after high temperature tempering[J]. Chinese Journal of Engineering, 2020, 42(7): 902-911. [21]高海龙. 新型3%Cr热作模具钢组织与力学性能研究[D]. 西安: 西安建筑科技大学, 2017. Gao Hailong. Study on microstructure and mechanical properties of new 3%Cr hot working die steel[D]. Xi'an: Xi'an University of Architecture and Technology, 2017. [22]Derek Hull. 断口形貌学 观察、测量和分析断口表面形貌的科学[M]. 李晓刚, 董超芳, 杜翠薇, 等译. 北京: 科学出版社, 2009. [23]钟锦岩, 肖 葵, 刘丽玉. 超高强度钢的断口分析[M]. 北京: 化学工业出版社, 2020. [24]胡 涛, 吴日铭, 李方杰, 等. 高强韧热作模具钢SR19的组织与力学性能[J]. 金属热处理, 2022, 47(1): 149-155. Hu Tao, Wu Riming, Li Fangjie, et al. Microstructure and mechanical properties of high strength and toughness hot-working die steel SR19[J]. Heat Treatment of Metals, 2022, 47(1): 149-155. [25]Honeycombe W, 傅俊岩. 钢的显微组织和性能[M]. 北京: 冶金工业出版社, 1985. [26]张金祥, 欧阳希, 周 健, 等. 喷射成形新型热作模具钢的组织与力学性能研究[J]. 热加工工艺, 2018, 47(24): 242-247. Zhang Jinxiang, Ouyang Xi, Zhou Jian, et al. Study on microstructure and mechanical properties of new type spray formed hot working tool steels[J]. Hot Working Technology, 2018, 47(24): 242-247. [27]Chunfang W, Maoqiu W, Jie S. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492-495. |