[1]刘 兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu Bing, Peng Chaoqun, Wang Richu, et al. Research status and prospect of aluminum alloy for large aircraft[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715. [2]李春梅, 陈志谦, 程南璞, 等. 7055超高强、超高韧铝合金力学性能分析[J]. 金属热处理, 2008, 33(1): 100-104. Li Chunmei, Chen Zhiqian, Cheng Nanpu, et al. Mechanical properties analysis of 7055 ultra-high strength and ultra-high toughness aluminum alloy[J]. Heat Treatment of Metals, 2008, 33(1): 100-104. [3]罗 宁, 张 鹏, 袁武华, 等. 7055铝合金热处理工艺优化研究[J]. 热加工工艺, 2019, 48(24): 161-165. Luo Ning, Zhang Peng, Yuan Wuhua, et al. Heat treatment process optimization of 7055 aluminum alloy[J]. Hot Working Technology, 2019, 48(24): 161-165. [4]任建平, 宋仁国, 陈小明, 等. 7×××系铝合金热处理工艺的研究现状及进展[J]. 热加工工艺, 2009, 38(6): 119-124. Ren Jianping, Song Renguo, Chen Xiaoming, et al. Research status and progress of heat treatment process of 7××× series aluminum alloy[J]. Hot Working Technology, 2009, 38(6): 119-124 [5]任建平, 于智宏, 宋仁国. 7×××系铝合金固溶处理工艺对时效峰值的影响[J]. 轻合金加工技术, 2013, 41(7): 43-45. Ren Jianping, Yu Zhihong, Song Renguo. Effect of solution treatment technology on aging peak value of 7××× series aluminum alloy[J]. Light Alloy Fabrication Technology, 2013, 41(7): 43-45. [6]赵安安, 胡生双, 陈素明, 等. 多次重复固溶时效处理对TB15钛合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(11): 91-94. Zhao Anan, Hu Shengshuang, Chen Suming, et al. Effect of repeated solution aging treatment on microstructure and mechanical properties of TB15 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(11): 91-94. [7]赵晓洁, 余荣华, 袁鹏斌. 改善7055铝合金力学性能的研究[J]. 热加工工艺, 2015, 44(16): 107-108. Zhao Xiaojie, Yu Ronghua, Yuan Pengbin. Research on improving mechanical properties of 7055 aluminum alloy[J]. Hot Working Technology, 2015, 44(16): 107-108. [8]单楚峰. 固溶、时效工艺对Al-Zn-Mg-Cu合金组织和性能的影响[D]. 大连: 大连交通大学, 2020. Shan Chufeng. Effect of solution and aging process on microstructure and properties of Al-Zn-Mg-Cu alloy[D]. Dalian: Dalian Jiaotong University, 2020. [9]吴沂哲, 温 凯, 吕 丹. 时效处理对Al-9.3Zn-2.0Mg-2.1Cu合金型材组织性能的影响[J]. 轻合金加工技术, 2022, 50(6): 41-47. Wu Yizhe, Wen Kai, Lü Dan. Effect of aging treatment on microstructure and properties of Al-9.3Zn-2.0Mg-2.1Cu alloy profiles[J]. Light Alloy Fabrication Technology, 2022, 50(6): 41-47. [10]张 静, 杨 亮, 左汝林. 固溶时效工艺对7055铝合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(4): 956-960. Zhang Jing, Yang Liang, Zuo Rulin. Effect of solution aging process on microstructure and mechanical properties of 7055 aluminum alloy[J]. Rare Metal Materials and Engineering, 2015, 44(4): 956-960. [11]黄超群, 赵天生, 高 飞. 热处理对7×××系铝合金组织及性能影响的研究进展[J]. 材料导报, 2015, 29(23): 98-102. Huang Chaoqun, Zhao Tiansheng, Gao Fei. Research progress of effect of heat treatment on microstructure and properties of 7××× series aluminum alloy[J]. Materials Reports, 2015, 29(23): 98-102. [12]魏雨虹. 热处理对7055铝合金组织及其性能的影响[D]. 哈尔滨: 哈尔滨理工大学, 2020. Wei Yuhong. Effect of heat treatment on microstructure and properties of 7055 aluminum alloy[D]. Harbin: Harbin University of Science and Technology, 2020. [13]程亚军, 冷 利, 宫柏山, 等. 时效时间对7075铝合金疲劳裂纹扩展速率的影响[J]. 材料热处理学报, 2021, 42(5): 26-31. Cheng Yajun, Leng Li, Gong Baishan, et al. Effect of aging time on fatigue crack growth rate of 7075 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 26-31. [14]张可人, 许晓静, 张 洁. 多级固溶时效对7×××系超高强冷挤压铝合金组织性能的影响[J]. 金属热处理, 2021, 46(7): 165-168. Zhang Keren, Xu Xiaojing, Zhang Jie. Effect of multistage solution aging on microstructure and properties of 7××× series ultra-high strength cold extruded aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(7): 165-168. [15]肖 寒, 张宏宇, 谭 聪, 等. 固溶时效对新型高强耐蚀钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2021, 50(5): 1775-1780. Xiao Han, Zhang Hongyu, Tan Cong, et al. Effect of solution aging on microstructure and properties of new high strength corrosion resistant titanium alloys[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1775-1780. [16]刘 兢. 固溶时效工艺对喷射成形7055铝合金自由锻件微观组织和性能的影响[D]. 哈尔滨: 哈尔滨工程大学, 2017. Liu Jing. Effect of solution aging process on microstructure and properties of spray forming 7055 aluminum alloy free forging[D]. Harbin: Harbin Engineering University, 2017. [17]余代尧, 黄兴民, 赵君文, 等. 固溶温度对7A85铝合金显微组织和断裂机理的影响[J]. 材料热处理学报, 2022, 43(12): 36-44. Yu Daiyao, Huang Xingmin, Zhao Junwen, et al. Effect of solutiontemperature on microstructure and fracture mechanism of 7A85 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 36-44. [18]叶 辉, 崔晓丽, 崔红卫, 等. 镁与热处理对Al-4Si-(xMg)合金导电性及力学性能的影响[J]. 金属热处理, 2021, 46(1): 97-103. Ye Hui, Cui Xiaoli, Cui Hongwei, et al. Effect of magnesium and heat treatment on conductivity and mechanical properties of Al-4Si-(xMg) alloy[J]. Heat Treatment of Metals, 2021, 46(1): 97-103. [19]戴晓元, 熊超宇, 华熳煜. 固溶-时效对7×××系铝合金淬透性的影响[J]. 金属热处理, 2018, 43(7): 155-162. Dai Xiaoyuan, Xiong Chaoyu, Hua Manyu. Effect of solution-aging on the hardenability of 7××× series aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(7): 155-162. [20]石 磊, 刘崇宇, 肖济金, 等. 轧制协同热处理对7055铝合金性能的影响[J]. 材料热处理学报, 2022, 43(6): 50-56. Shi Lei, Liu Chongyu, Xiao Jijin, et al. Effect of rolling co-heat treatment on properties of 7055 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2022, 43(6): 50-56. [21]Zhong Liwei, Gao Wenli, Feng Zhaohui, et al. Hot deformation characterization of as-homogenized Al-Cu-Li X2A66 alloy through processing maps and microstructural evolution[J]. Journal of Materials Science and Technology, 2019, 35: 2409-2421. [22]宁爱林, 曾苏民, 蒋寿生, 等. 7A04 铝合金高温固溶的微观组织和力学性能[J]. 轻合金加工技术, 2005, 33(5): 48-51. Nin Ailin, Zeng Sumin, Jiang Shousheng, et al. Microstructure and mechanical properties of 7A04 aluminum alloy in higher temperature solid solution[J]. Light Alloy Fabrication Technology, 2005, 33(5): 48-51. |