[1]吴正凯, 吴圣川, 张 杰, 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820. Wu Zhengkai, Wu Shengchuan, Zhang Jie, et al. Fatigue behavior induced by selective laser melting of Ti-6Al-4V alloy based on synchrotron radiation X-ray imaging[J]. Acta Metallica Sinica, 2019, 55(7): 811-820. [2]高 星, 张 宁, 丁 燕, 等. 热处理时间对激光选区成形TC4钛合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(9): 12-17. Gao Xing, Zhang Ning, Ding Yan, et al. Effect of heat treatment time on microstructure and mechanical properties of laser selective forming TC4 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(9): 12-17. [3]李 颖, 彭 霜, 张 婷, 等. 选区激光熔化制备Ti-6Al-4V合金的热处理工艺及力学性能[J]. 金属热处理, 2022, 47(9): 175-181. Li Ying, Peng Shuang, Zhang Ting, et al. Heat treatment and mechanical properties of Ti-6Al-4V alloy prepared by selective laser melting[J]. Heat Treatment of Metals, 2012, 47(9): 175-181. [4]蔡小叶, 程宗辉, 白 兵. 航空橡胶波纹管模具的轻量化设计与制造[J]. 橡胶工业, 2023, 70(2): 142-147. Cai Xiaoye, Cheng Zonghui, Bai Bing. Lightweight design and manufacture of aerospace rubber bellows mold[J]. Rubber Industry, 2023, 70(2): 142-147. [5]张 升, 桂睿智, 魏青松, 等. 选择性激光熔化成形TC4钛合金开裂行为及其机理研究[J]. 机械工程学报, 2013, 49(23): 21-27. Zhang Sheng, Gui Ruizhi, Wei Qingsong, et al. Study on cracking behavior and mechanism of selective laser melting forming TC4 titanium alloy[J]. Chinese Journal of Mechanical Engineering, 2013, 49(23): 21-27. [6]谷美邦. 热处理制度对激光增材制造TA15钛合金力学性能的影响[J]. 航空制造技术, 2021, 64(3): 97-102. Gu Meibang. Effect of heat treatment regime on mechanical properties of laser additive manufacturing TA15 titanium alloy[J]. Aeronautical Manufacturing Technology, 2021, 64(3): 97-102. [7]蔡小叶, 胡家齐, 程宗辉, 等. 飞机进气口格栅激光选区熔化成形技术研究[J]. 激光与光电子学进展, 2021, 58(17): 302-308. Cai Xiaoye, Hu Jiaqi, Cheng Zonghui, et al. Research on laser selective melting forming of aircraft air intake grilles[J]. Laser and Optoelectronics Progress, 2021, 58(17): 302-308. [8]赵金猛, 卢 林, 王静荣, 等. 工艺参数对激光选区熔化成形Ti6Al4V合金致密性的影响[J]. 机械工程材料, 2022, 46(8): 100-104. Zhao Jinmeng, Lu Lin, Wang Jingrong, et al. Influence of process parameters on the densification of Ti6Al4V alloy formed by laser selective melting[J]. Materials for Mechanical Engineering, 2022, 46(8): 100-104. [9]窦 振, 王豫跃, 张安峰, 等. 不同热处理对SLM TC4组织性能及各向异性的影响[J]. 中国激光, 2022, 49(8): 97-108. Dou Zhen, Wang Yuyue, Zhang Anfeng, et al. Effects of different heat treatments on microstructure properties and anisotropy of SLM TC4[J]. Chinese Journal of Lasers, 2022, 49(8): 97-108. [10]Wang Pei, Chen Fenghua, et al. Effect of annealing treatment on microstructure and mechanical properties of Ti-6Al-4V alloy formed by laser selective laser melting[J]. Journal of Central South University, 2021, 28(4): 1068-1077. [11]Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312. [12]张伟祥, 唐超兰, 陈志茹, 等. 退火温度对激光选区熔化成形TC4钛合金组织及力学性能的影响[J]. 金属热处理, 2019, 44(6): 122-127. Zhang Weixiang, Tang Chaolan, Chen Zhiru, et al. Effect of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy by laser selective melting forming[J]. Heat Treatment of Metals, 2019, 44(6): 122-127. [13]Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185. [14]Pauly S, Wang P, Kühn, Uta, et al. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu[J]. Additive Manufacturing, 2018, 22: 753-757. [15]莱茵斯 C, 皮特尔斯 M. 钛与钛合金[M]. 陈振华, 译. 北京: 化学工业出版社, 2005. [16]Yang Jingjing, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials and Design, 2016, 108: 308-318. [17]Yu Hanchen, Li Fangzhi, Zeng Xiaoyan, et al. Fatigue performances of selective laser melted Ti-6Al-4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments[J]. International Journal of Fatigue, 2019, 120: 175-183. |