[1]Khairallah S A, Martin A A, Lee J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing[J]. Science, 2020, 368(6491): 660-665. [2]Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Additive Manufacturing, 2018, 21: 248-254. [3]Acharya R, Sharon A J, Staroselsky A. Prediction of microstructure in laser powder bed fusion process[J]. Acta Materialia, 2017, 124: 360-371. [4]Kranz J, Herzog D, Emmelmann C. Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4[J]. Journal of Laser Applications, 2014, 27(S1): 14001. [5]Awad A, Fina F, Goyanes A, et al. Advances in powder bed fusion 3D printing in drug delivery and healthcare[J]. Advanced Drug Delivery Reviews, 2021, 174: 406-424. [6]Yang T, Dacian T, Paul R, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 2017, 13: 103-112. [7]Shen X F, Cheng Z Y, Wang C G, et al. Effect of heat treatments on the microstructure and mechanical properties of Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Optics and Laser Technology, 2021, 143: 107312. [8]ZhangJ L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2018, 35(2): 270-284. [9]Vukkum V B, Gupta R K. Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: Effect of processing parameters, manufacturing defects, post-processing, feedstock, and microstructure[J]. Materials & Design, 2022, 221: 110874. [10]Koutiri I, Pessard E, Peyre P, et al. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts[J]. Journal of Materials Processing Technology, 2017, 255: 536-546. [11]Brennan M C, Keist J S, Palmer T A. Defects in metal additive manufacturing processes[J]. Journal Materials Engineering Performance, 2021, 30: 4808-4818. [12]Gokcekaya O, Ishimoto T, Hibino S, et al. Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy[J]. Acta Materialia, 2021, 212: 116876. [13]Galina K, Jan H, Joachim G, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 2016, 105: 160-170. [14]Ross C, Zhao C, Niranjan P, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 2019, 363(6429): 849-852. [15]Mugwagwa L, Dimitrov D, Matope S, et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing, 2018, 21: 92-99. [16]Zhang S, Xu S B, Pan Y F, et al. Mechanism study of the effect of selective laser melting energy density on the microstructure and properties of formed renewable porous bone scaffolds[J]. Metals, 2022, 12(10): 1712-1712. [17]Shi W T, Li J H, Liu Y D, et al. Experimental study on mechanism of influence of laser energy density on surface quality of Ti-6Al-4V alloy in selective laser melting[J]. Journal of Central South University, 2022, 29(10): 3447-3462. [18]Marial, Miguel G M, Kurt B, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018, 23: 402-410. [19]Önder S, Saklakoglu N. Selective laser melting of Ti6Al4V alloy: Effects of process parameters at constant energy density on mechanical properties, residual stress, microstructure and relative density[J]. Materials Testing, 2023, 65(2): 162-173. [20]Johnso N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101641. [21]苏金龙, 陈乐群, 谭超林, 等. 基于机器学习的增材制造过程优化与新材料研发进展[J]. 中国激光, 2022, 49(14): 3-14. Su Jinlong, Chen Lequn, Tan Chaolin, et al. Progress in machine-learning-assisted process optimization and novel material development in additive manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 3-14. [22]Tapia G, Elwany A H, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial gaussian process models[J]. Additive Manufacturing, 2016, 12: 282-290. [23]Chandrika K, Fan Y J. Regression with small data sets: A case study using code surrogates in additive manufacturing[J]. Knowledge and Information System, 2018, 57(2): 475-493. [24]Liu Q, Wu H H, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms[J]. Acta Mater, 2020, 201: 316-328. [25]He P D, Liu Q, Krizic J J, et al. Machine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with tailorable mechanical properties[J]. Materials Letters, 2022, 307: 131018. [26]孙业东, 姜夕义, 李昊卿, 等. 基于机器学习的Ti-6Al-4V合金激光粉末床熔融工艺优化[J]. 中国有色金属学报, 2022, 32(10): 3085-3095. Sun Yedong, Jiang Xiyi, Li Haoqing, et al. Optimization of selective laser powder bed fusion process for Ti-6Al-4V alloy based on machine-learning[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3085-3095. [27]Sam C, Manisha B, Jan P, et al. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data[J]. Additive Manufacturing, 2018, 25: 347-356. [28]Masoumeh A, Thomas R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images[J]. Journal of Intelligent Manufacturing, 2019, 30(6): 2505-2523. [29]Chen Z, Lu Y X, Luo F, et al. Effect of laser scanning speed on the microstructure and mechanical properties of laser-powder-bed-fused k418 nickel-based alloy[J]. Materials, 2022, 15(9): 3045-3045. [30]Gaur R, Bhanupratap R, Ghyar R, et al. Parameter optimization for printing Ti6Al4V-alloy patient-customized orthopaedic implants by laser powder bed fusion using physio-mechanical properties and biological evaluations[J]. Indian Journal of Orthopaedics, 2022, 56(5): 797-804. [31]Liu K, Gu D D, Guo M, et al. Effects of processing parameters on densification behavior, microstructure evolution and mechanical properties of W-Ti alloy fabricated by laser powder bed fusion[J]. Materials Science & Engineering A, 2022, 829. [32]Li B, Zhang W, Xuan F Z. Machine-learning prediction of selective laser melting additively manufactured part density by feature-dimension-ascended Bayesian network model for process optimisation[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(5-6): 4023-4038. [33]Jessica G, Dominik B, Thorsten S, et al. Advanced microstructure classification by data mining methods[J]. Computational Materials Science, 2018, 148: 324-335. [34]Azimi S M, Britz D, Engstler M, et al. Advanced steel microstructural classification by deep learning methods[J]. Scientific Reports, 2018, 8(1): 2128. [35]Kang J, Hu X H, Wright S I, et al. On the calculation of volume fraction of texture components in aa5754 sheet materials[J]. Metallurgical and Materials Transactions, 2008(8): 2007-2013. [36]Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms[J]. Acta Mater, 2020, 201: 316-328. |