[1]秦树超, 黄翠环, 赵昊乾, 等. SWRH82B高碳钢盘条断面收缩率低的机理分析[J]. 金属热处理, 2018, 43(10): 243-246. Qin Shuchao, Huang Cuihuan, Zhao Haoqian, et al. Mechanism analysis of low percentage of area reduction of SWRH82B high carbon steel wire rod[J]. Heat Treatment of Metals, 2018, 43(10): 243-246. [2]Liao L L, Wei H, Li L Z, et al. Causes and control mechanism of abnormal structure in the center of SWRH82B wire-rod-steel[J]. Materials Science Forum, 2019, 944(1): 294-302. [3]沈 奎, 麻 晗, 孙国才, 等. 过共析钢碳含量对晶界渗碳体的影响[J]. 热加工工艺, 2022, 51(12): 133-137. Shen Kui, Ma Han, Sun Guocai, et al. Effect of carbon content on grain boundary cementite of hypereutectoid steel[J]. Hot Working Technology, 2022, 51(12): 133-137. [4]Wei F, Zhang T, Xu L, et al. Study of phase transformation behavior of SWRH82B high-carbon steel and its abnormal core structure[J]. Materials Research Express, 2019, 6(10): 1-13. [5]李 平, 王 雷, 周青峰, 等. 82B中心网状渗碳体产生原因及改善方法[J]. 钢铁研究学报, 2014, 26(9): 33-36. Li Ping, Wang Lei, Zhou Qingfeng, et al. Formation reasons and countermeasures of cementite network in the center of 82B wire rods[J]. Journal of Iron and Steel Research, 2014, 26(9): 33-36. [6]周青峰, 王敏花, 马建超, 等. SWRH82B小方坯中心偏析的改善[J]. 上海金属, 2014, 36(1): 48-54. Zhou Qingfeng, Wang Minhua, Ma Jianchao, et al. Improvement of central segregation in SWRH82B billets[J]. Shanghai Metals, 2014, 36(1): 48-54. [7]王 雷, 李月云, 胡 磊, 等. 高碳钢盘条斯太尔摩冷却相变研究[J]. 热加工工艺, 2018, 47(22): 191-199. Wang Lei, Li Yueyun, Hu Lei, et al. Study on phase transformation of high carbon steel wire rod during Stellmor cooling process[J]. Hot Working Technology, 2018, 47(22): 191-199. [8]王忠伟, 花凌冬. 高速线材斯太尔摩线控冷工艺改进[J]. 金属制品, 2020, 46(5): 45-49. Wang Zhongwei, Hua Lingdong. Improvement of high speed wire rod Stelmor line cooling process[J]. Metal Products, 2020, 46(5): 45-49. [9]卢立华, 王 雷, 麻 晗. 82B中心网状渗碳体形成规律及影响因素[J]. 热加工工艺, 2015, 44(8): 97-99. Lu Lihua, Wang Lei, Ma Han. Regularity and influence factors of cementite network in center of 82B wire rods[J]. Hot Working Technology, 2015, 44(8): 97-99. [10]皇祝平, 李 解, 周正东, 等. 82B盘条中心网状渗碳体形成原因及改善措施[J]. 金属制品, 2022, 48(2): 26-29. Huang Zhuping, Li Jie, Zhou Zhengdong, et al. Formation reason and improvement measure of center network cementite in 82B wire rod[J]. Metal Products, 2022, 48(2): 26-29. [11]李桂英, 姜世全. 82B盘条质量研究[J]. 金属制品, 2005, 31(3): 42-44. Li Guiying, Jiang Shiquan. Investigation of 82B wire rod quality[J]. Metal Products, 2005, 31(3): 42-44. [12]李长胜, 马志军, 王 进, 等. 高碳82B线材控轧控冷工艺优化实践[J]. 山东冶金, 2014, 36(1): 20-21. Li Changsheng, Ma Zhijun, Wang Jin, et al. Optimization practice on controlled rolling and controlled cooling process of high carbon 82B wire rod[J]. Shandong Metallurgy, 2014, 36(1): 20-21. [13]洪树利. 帘线钢盘条索氏体片层间距控制生产实践[J]. 鞍钢技术, 2011(2): 56-58. Hong Shuli. Production practice of controlling lamellar spacing of sorbite structure of cord steel coil[J]. Angang Technology, 2011(2): 56-58. [14]沈 奎, 廖舒纶, 于学森, 等. 减少帘线钢改判率的工艺实践[J]. 热加工工艺, 2015, 37(3): 66-69. Shen Kui, Liao Shulun, Yu Xuesen, et al. Process practice in reducing commuted rate of tire cord steel[J]. Shanghai Metals, 2015, 37(3): 66-69. [15]郝 芳, 王福明, 金桂香, 等. 吐丝温度对82B高碳钢动态CCT曲线的影响[J]. 金属热处理, 2011, 36(12): 4-8. Hao Fang, Wang Fuming, Jin Guixiang, et al. Effect of loop laying temperature on dynamic CCT curve of high carbon steel 82B[J]. Heat Treatment of Metals, 2011, 36(12): 4-8. |