[1]鲜 宁, 姜 放, 荣 明, 等. 连续油管在酸性环境下的弯曲疲劳寿命研究[J]. 焊管, 2020, 43(1): 15-19. Xian Ning, Jiang Fang, Rong Ming, et al. Research on the bend fatigue life of the coiled tubing exposed to sour environments[J]. Welded Pipe and Tube, 2020, 43(1): 15-19. [2]何春生, 刘巨保, 岳欠杯, 等. 基于椭圆度及壁厚参数的连续油管低周疲劳寿命预测[J]. 石油钻采工艺, 2013, 35(6): 15-18. He Chunsheng, Liu Jubao, Yue Qianbei, et al. Prediction of the low-cycle fatigue life of the coiled tubing based on ovality and wall thickness parameter[J]. Oil Drilling and Production Technology, 2013, 35(6): 15-18. [3]李小龙, 周敦世, 周立新, 等. 42CrMo钢轧制工艺优化[J]. 锻压技术, 2017, 42(1): 71-74. Li Xiaolong, Zhou Dunshi, Zhou Lixin, et al. Optimization on rolling process for steel 42CrMo[J]. Forging and Stamping Technology, 2017, 42(1): 71-74. [4]廖 波, 肖福仁. 针状铁素体管线钢组织及强韧化机理研究[J]. 材料热处理学报, 2009, 30(2): 57-62. Liao Bo, Xiao Furen. Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(2): 57-62. [5]熊维亮, 梁 文, 吴 腾, 等. 控冷工艺对热轧双相钢组织与性能的影响[J]. 金属热处理, 2022, 47(9): 130-133. Xiong Weiliang, Liang Wen, Wu Teng, et al. Effect of controlled cooling process on microstructure and mechanical properties of hot-rolled dual phase steel[J]. Heat Treatment of Metals, 2022, 47(9): 130-133. [6]何建军, 陈 荐, 孙清民, 等. 不同加载速率下汽轮机转子钢的高温低周疲劳断裂特征[J]. 热加工工艺, 2011, 40(4): 20-22, 26. He Jianjun, Chen Jian, Sun Qingmin, et al. Fracture characteristics of high temperature and low cycle fatigue of turbine rotor steel at different loading rates[J]. Hot Working Technology, 2011, 40(4): 20-22, 26. [7]袁付春, 刘雅政, 周乐育, 等. 非调质CT80连续油管用钢的控轧控冷工艺[J]. 金属热处理, 2012, 37(7): 13-17. Yuan Fuchun, Liu Yazheng, Zhou Leyu, et al. Controlled rolling and cooling process of microalloyed CT80 coiled tubing steel[J]. Heat Treatment of Metals, 2012, 37(7): 13-17. [8]周乐育, 李明扬, 刘雅政, 等. 合金元素和工艺参数对非调质CT80钢组织性能影响[J]. 材料热处理学报, 2013, 34(5): 80-86. Zhou Leyu, Li Mingyang, Liu Yazheng, et al. Effect of alloy elements and process parameters on microstructure and properties of non-quenched and tempered CT80 steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 80-86. [9]张 良, 赵征志, 冯金玉. 冷却工艺对热轧铁素体贝氏体双相钢组织与性能的影响[J]. 金属热处理, 2014, 39(3): 23-26. Zhang Liang, Zhao Zhengzhi, Feng Jinyu. Effects of cooling process on microstructure and properties of hot rolled ferrite-bainite dual-phase steel[J]. Heat Treatment of Metals, 2014, 39(3): 23-26. [10]马保飞. CT80级连续油管钢疲劳性能研究[D]. 西安: 西安理工大学, 2010. [11]Novillo E, Hernandez D, Gutierrez I, et al. Analysis of ferrite grain growth mechanisms during γ-α transformation in a niobium alloyed steel using EBSD[J]. Materials Science and Engineering A, 2004, 385(1/2): 83-90. [12]高圣勇, 王一雯, 苏 孺, 等. GH4169高温合金低周疲劳变形行为研究[J]. 稀有金属, 2022, 46(3): 289-296. Gao Shengyong, Wang Yiwen, Su Ru, et al. Low-cycle fatigue behavior of GH4169 superalloy[J]. Chinese Journal of Rare Metals, 2022, 46(3): 289-296. [13]罗少强, 舒林森, 王 波, 等. 1 mm厚304L不锈钢冷轧板的低周疲劳性能分析[J]. 陕西理工大学学报(自然科学版), 2019, 35(2): 6-11. Luo Shaoqiang, Shu Linsen, Wang Bo, et al. Analysis of low cycle fatigue properties of 1 mm thick 304L stainless steel cold rolled sheet[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2019, 35(2): 6-11. [14]屈华鹏, 王留兵, 王东辉, 等. 时效强化高镍Inconel-718合金低周疲劳性能及寿命预测[J]. 金属热处理, 2021, 46(7): 1-6. Qu Huapeng, Wang Liubing, Wang Donghui, et al. Low-cycle fatigue properties and life prediction of aging strengthened high-nickel Inconel-718 alloy[J]. Heat Treatment of Metals, 2021, 46(7): 1-6. [15]王建国, 杨胜利, 王红缨, 等. 800 MPa级低合金高强度钢低周疲劳性能[J]. 北京科技大学学报, 2005, 27(1): 75-78. Wang Jianguo, Yang Shengli, Wang Hongying, et al. Low-cycle fatigue properties of 800 MPa-grade ultrafine-grained steel[J]. Journal of University of Science and Technology Beijing, 2005, 27(1): 75-78. [16]徐淮建. 亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能研究[D]. 杭州: 浙江大学, 2018. [17]墨馨遥, 薛凤梅, 刘 毅, 等. 基于XFEM的复杂应力状态下疲劳裂纹扩展分析[J]. 塑性工程学报, 2022, 29(1): 177-182. Mo Xinyao, Xue Fengmei, Liu Yi, et al. Analysis of fatigue crack propagation under complex stress state based on XFEM[J]. Journal of Plasticity Engineering, 2022, 29(1): 177-182. [18]Gang C, Gao J, Yun C, et al. Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT[J]. Journal of Alloys and Compounds, 2018, 735: 536-46. [19]高 栋, 钱凌翼, 郭云珊, 等. 热障涂层对单晶高温合金多轴热机疲劳性能的影响[J]. 金属热处理, 2022, 47(6): 216-222.Gao Dong, Qian Lingyi, Guo Yunshan, et al. Influence of thermal barrier coatings on multiaxial thermo-mechanical fatigue properties of single crystal superalloy[J]. Heat Treatment of Metals, 2022, 47(6): 216-222. [20]罗云蓉, 王清远, 付 磊, 等. Q235钢结构材料的超低周疲劳性能[J]. 钢铁研究学报, 2016, 28(12): 47-51. Luo Yunrong, Wang Qingyuan, Fu Lei, et al. Extremely low cycle fatigue properties of steel structure materials Q235[J]. Journal of Iron and Steel Research, 2016, 28(12): 47-51. [21]高彩茹, 杜林秀, 张福波, 等. 400 MPa级薄钢板的疲劳性能及断口分析[J]. 钢铁研究学报, 2008, 20(8): 50-54. Gao Cairu, Du Linxiu, Zhang Fubo, et al. Fatigue performance of 400 MPa thin plate steel and analysis of fracture[J]. Journal of Iron and Steel Research, 2008, 20(8): 50-54. [22]荀 雨, 严 伟, 史显波, 等. 多边形铁素体/针状铁素体双相管线钢的应变硬化行为[J]. 材料研究学报, 2022, 36(8): 561-570. Xun Yu, Yan Wei, Shi Xianbo, et al. Strain hardening behavior of polygonal ferrite and acicular ferrite dual-phase pipeline steel[J]. Chinese Journal of Materials Research, 2022, 36(8): 561-570. [23]赵 楠, 刘学伟, 孙明军, 等. 低温卷取热轧双相钢的显微组织及疲劳性能[J]. 金属热处理, 2021, 46(5): 55-59. Zhao Nan, Liu Xuewei, Sun Mingjun, et al. Microstructure and fatigue properties of low temperature coiling hot-rolled dual phase steel[J]. Heat Treatment of Metals, 2021, 46(5): 55-59. |