[1]Ma J, Song Y Y, Jiang H C, et al. Effect of Cu on the microstructure and mechanical properties of a low-carbon martensitic stainless steel[J]. Materials (Basel), 2022, 15(24): 8849. [2]周 成, 赵 坦, 叶其斌, 等. 回火温度对1000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569. Zhou Cheng, Zhao Tan, Ye Qibin, et al. Effect of tempering temperature on microstructure and low-temperature toughness of 1000 MPa grade NiCrMoV low carbon alloy steel[J]. Acta Metallurgica Sinica, 2022, 58(12): 1557-1569. [3]He Z Y, Wang P, Liu G M, et al. The phase transformation in a low-carbon 13Cr4Ni martensitic stainless steel during two-stageintercritical tempering[J]. Metals, 2023, 13(7): 1302. [4]Nakanishi D, Kawabata T, Aihara S. Effect ofdispersed retained γ-Fe on brittle crack arrest toughness in 9%Ni steel in cryogenic temperatures[J]. Materials Science and Engineering A, 2018, 723: 238-246. [5]战国锋, 刘继雄, 肖建中, 等. Cu 及热处理工艺对 9Ni 钢组织及性能的影响[J]. 材料热处理学报, 2015, 36(8): 139-143. Zhan Guofeng, Liu Jixiong, Xiao Jianzhong, et al. Influence of addition of Cu and heat treatment on microstructure and properties of 9Ni steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(8): 139-143. [6]熊庆人, 霍春勇, 李为卫, 等. 9%Ni钢亚温淬火处理工艺参数试验研究[J]. 材料热处理学报, 2017, 38(2): 136-142. Xiong Qingren, Huo Chunyong, Li Weiwei, et al. Experimental investigation of intercritical hardening of a 9%Ni steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 136-142. [7]张 坤, 唐 荻, 武会宾, 等. 两相区淬火对 9Ni 钢中逆转变奥氏体的影响[J]. 材料热处理学报, 2012, 33(8): 59-63. Zhang Kun, Tang Di, Wu Huibin, et al. Effect of quenching in dual-phase region on the reversed austenite in 9Ni steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(8): 59-63. [8]谢章龙, 陈 锋, 胡其龙, 等. 奥氏体化及回火温度对E550级低温钢组织和性能的影响[J]. 金属热处理, 2021, 46(1): 65-70. Xie Zhanglong, Chen Feng, Hu Qilong, et al. Influence of austenitizing and tempering temperature on microstructure and properties of E550 low-temperature steel[J]. Heat Treatment of Metals, 2021, 46(1): 65-70. [9]李员妹, 孙新军, 雍岐龙, 等. 回火温度对5.5Ni低温钢组织和力学性能的影响[J]. 材料研究学报, 2015, 29(11): 860-866. Li Yuanmei, Sun Xinjun, Yong Qilong, et al. Effect of tempering temperature on microstructure and mechanical properties of 5.5Ni cryogenic steel[J]. Chinese Journal of Materials Research, 2015, 29(11): 860-866. [10]Wang J, Li W, Zhu X D, et al. Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels[J]. Materials Science and Engineering A, 2022, 832: 142424. [11]田景云, 洪 波, 沈俊昶. 回火温度对 9NiCrMo 钢性能和组织的影响[J]. 钢铁钒钛, 2013, 34(6): 101-105. Tian Jingyun, Hong Bo, Shen Junxu. Effect of tempering temperature on microstructure and properties of 9NiCrMo steel[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 101-105. [12]Sk M B, Alam I, Chakrabarti D. The role of fibrous morphology on the charpy impact properties of low carbon ferrite-bainite dual phase steel[J]. Materials Science and Engineering A, 2018, 716: 208-219. [13]程久珊, 刘 静, 镇 凡, 等. 含Cu的Mn-Nb-B系超低碳贝氏体钢的强韧化机理[J]. 有色金属(冶炼部分), 2011(7): 39-42. Cheng Jiushan, Liu Jing, Zhen Fan, et al. High strength and toughness mechanism of ultra-low carbon bainitic steel containing Cu in Mn-Nb-B micro-alloy[J]. Nonferrous Metals (Extractive Metallurgy), 2011(7): 39-42. [14]Zhang Y W, Zhang C, Yuan X M, et al. Microstructure evolution and orientation relationship of reverted austenite in 13Cr supermartensitic stainless steel during the tempering process[J]. Materials (Basel), 2019, 12(4): 589. [15]徐海峰, 李 海, 李凤敏, 等. 合金元素及热处理对新型槽帮钢组织与性能的影响[J]. 金属热处理, 2023, 48(4): 148-154. Xu Haifeng, Li Hai, Li Fengmin, et al. Effects of alloy element and heat treatment on microstructure and properties of new-type slot edge steel[J]. Heat Treatment of Metals, 2023, 48(4): 148-154. [16]Escobar J D, Poplawsky J D, Faria G A, et al. Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation[J]. Materials and Design, 2018, 140: 95-105. [17]黄 曦, 上官昌平, 王泽民, 等. QLT 工艺对新型车轴钢显微组织与性能的影响[J]. 现代交通与冶金材料, 2022, 2(5): 40-45. Huang Xi, Shangguan Changping, Wang Zemin, et al. Effect of QLT process on microstructure and properties of new axle steel[J]. Modern Transportation and Metallurgical Materials, 2022, 2(5): 40-45. [18]Tavares S S, Bastos I N, Pardal J M, et al. Slow strain rate tensile test results of new multiphase 17% Cr stainless steel under hydrogen cathodic charging[J]. International Journal of Hydrogen Energy, 2015, 40(47): 16992-16999. [19]Escobar J D, Faria G A, Wu L, et al. Austenite reversion kinetics and stability during tempering of a Ti-stabilizedsupermartensitic stainless steel: Correlative in situ synchrotron X-ray diffraction and dilatometry[J]. Acta Materialia, 2017, 138: 92-99. [20]Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite[J]. ISIJ International, 2011, 51(2): 299-304. [21]杨跃辉, 武会宾, 蔡庆伍, 等. 9Ni 钢中回转奥氏体的形成规律及其稳定性[J]. 材料热处理学报, 2010, 31(3): 73-77. Yang Yuehui, Wu Huibin, Cai Qingwu, et al. Formation of reversed austenite and its stability in 9Ni steel during tempering[J]. Transactions of Materials and Heat Treatment, 2010, 31(3): 73-77. [22]赵 帅, 李青春, 安昊瀛, 等. Cr13Ni4Mo 钢逆转变奥氏体的形成及其对性能的影响[J]. 金属热处理, 2023, 48(1): 95-100. Zhao Shuai, Li Qingchun, An Haoying, et al. Formation of reversed austenite and its effect on properties of Cr13Ni4Mo steel[J]. Heat Treatment of Metals, 2023, 48(1): 95-100. [23]Govindaraj V, Hodgson P, Singh R P, et al. The effect of austenite reversion on the microstructure and mechanical properties of a 12Cr-3Ni-3Mn-3Cu-0.15Nb-0.05C maraging stainless steel[J]. Materials Science and Engineering A, 2021, 828: 142097. [24]Gruber M, Ploberger S, Ressel G, et al. Effects of the combined heat and cryogenic treatment on the stability of austenite in a high Co-Ni steel[J]. Archives of Metallurgy and Materials, 2015, 60(3): 2131-2137. [25]Huang X, Wang L B, Wang Z M, et al. Effect of temperature on microstructure and mechanical properties of Fe-9Ni-2Cu Steel during the tempering process[J]. Materials (Basel), 2021, 14(23): 7141. [26]Rodrigues P, Pereloma E V, Santos D. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering A, 2000, 283(1): 136-143. [27]Kim Y M, Kim S K, Lim Y J. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels[J]. ISIJ International, 2002, 42(12): 1571-1577. [28]许亚娟, 周清跃, 陈朝阳, 等. 回火工艺对 1200 MPa 级贝氏体钢轨组织性能的影响[J]. 材料热处理学报, 2012, 33(S1): 72-76. Xu Yajuan, Zhou Qingyue, Chen Zhaoyang, et al. Influence of temper technology on mechanical properties and microstructure of 1200 MPa bainite rail steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(S1): 72-76. [29]Govindaraj V, Hodgson P, Singh R P, et al. The effect of austenite reversion on the microstructure and mechanical properties of a 12Cr-3Ni-3Mn-3Cu-0.15Nb-0.05C maraging stainless steel[J]. Materials Science and Engineering A, 2021, 828: 142097. [30]Wang Z M, Dong Y, Li J J, et al. The role of cold rolling reduction on the microstructure and mechanical properties of ultra-low carbon bainitic steel[J]. Materials, 2022, 15(9): 3070. [31]张 坤, 唐 荻, 武会宾. 回火保温时间对 9Ni 钢逆转变奥氏体和低温韧性的影响[J]. 金属热处理, 2012, 37(3): 85-88. Zhang Kun, Tang Di, Wu Huibin. Effect of tempering time on reversed austenite and cryogenic toughness of 9Ni steel[J]. Heat Treatment of Metals, 2012, 37(3): 85-88. [32]Chen Q Y, Zhang W N, Xie Z L, et al. Influence of intercritical temperature on the microstructure and mechanical properties of 6.5 pct Ni steel processed by ultra-fast cooling, intercritical quenching and tempering[J]. Metallurgical and Materials Transactions A, 2020, 51(6): 3030-3041. [33]谭 昊, 崔 熙, 贾 潇, 等. 中锰钢残留奥氏体稳定性影响因素分析[J]. 焊管, 2019, 42(4): 54-60. Tan Hao, Cui Xi, Jia Xiao, et al. Analysis of factors affecting stability of retained austenite in medium manganese steel[J]. Welded Pipe and Tube, 2019, 42(4): 54-60. [34]Zhang S H, Wang P, Li D Z, et al. Investigation of the evolution of retained austenite in Fe-13%Cr-4%Ni martensitic stainless steel during intercritical tempering[J]. Materials and Design, 2015, 84: 385-394. [35]Han G, Hu B, Yu Y S, et al. Atomic-scale studyon the mechanism of formation of reverted austenite and the behavior of Mo in a low carbon low alloy system[J]. Materials Characterization, 2020, 163: 110269. [36]杨跃辉, 苑少强, 梁国俐, 等. 回火温度对超低碳7%Mn 钢组织与性能的影响[J]. 金属热处理, 2022, 46(10): 168-172. Yang Yuehui, Yuan Shaoqiang, Liang Guoli, et al. Effect of tempering temperature on microstructure and properties of ultra low carbon 7%Mn steel[J]. Heat Treatment of Metals, 2022, 46(10): 168-172. [37]王六定, 郑建邦, 陈 彦, 等. 逆转变奥氏体形成动力学研究[J]. 西北工业大学学报, 1999, 17(2): 226-229. Wang Liuding, Zheng Jianbang, Chen Yan, et al. Study on formation kinetics of reversed austenite[J]. Journal of Northwestern Polytechnical University, 1999, 17(2): 226-229. [38]Hou W, Liu Q D, Wen H M, et al. Effect of cyclicintercritical tempering on the microstructure and mechanical properties of a low-carbon Cu-bearing 7Ni steel[J]. Metallurgical and Materials Transactions A, 2020, 51(8): 3981-3995. |