[1]尹建清, 刘诗慧, 夏 炎, 等. 电力线路跨越电气化铁路跨越架体材料和结构受力研究[J]. 铁路工程技术与经济, 2023, 38(1): 27-33. Yin Jianqing, Liu Shihui, Xia Yan, et al. Study on the structural forces and materials of power line crossing electrified railway frame[J]. Railway Engineering Technology and Economy, 2023, 38(1): 27-33. [2]韩先才, 孙 昕, 陈海波, 等. 中国特高压交流输电工程技术发展综述[J]. 中国电机工程学报, 2020, 40(14): 4371-4386. Han Xiancai, Sun Xin, Chen Haibo, et al. A review of the development of ultra-high voltage AC transmission engineering technology in China[J]. Proceedings of the CSEE, 2020, 40 (14): 4371-4386. [3]乔利霞, 郭 健. 浅谈电力线路跨越高速公路架线施工[J]. 电力工程技术创新, 2022, 3(3): 47-49. Qiao Lixia, Guo Jian. Discussion on the construction of electric power line crossing expressway[J]. Power Engineering Technology Innovation, 2022, 3 (3): 47-49. [4]刘 铁, 赵 东, 孙田鸽, 等. 两种材质输电线路施工跨越架的力学对比分析[J]. 安徽建筑大学学报, 2018, 26(4): 62-66. Liu Tie, Zhao Dong, Sun Tiange, et al. Contrast and analysis to materials of crossing frame for transmission line stringing[J]. Journal of Anhui Institute of Architecture and Industry, 2018, 26(4): 62-66. [5]Cheng L, Chen X, Li Z B, et al. Comprehensive evaluation method of transmission line operating status based on improved combination weighting evaluation model[J]. Energy Reports, 2022, 8: 387-397. [6]罗 杰, 罗义华, 李 亮, 等. 移动展开式跨越架的设计与优化[J]. 合肥工业大学学报: 自然科学版, 2021, 44(7): 947-952. Luo Jie, Luo Yihua, Li Liang, et al. Design and optimization of mobile deployable crossing frame[J]. Journal of Hefei University of Technology: Natural Science, 2021, 44 (7): 947-952. [7]梁益嘉, 陈 强, 吴 钢, 等. 车载移动式跨越架的研制[J]. 长江大学学报(自科版), 2016, 13(28): 50-54. Liang Yijia, Chen Qiang, Wu Gang, et al. Development of a vehicle-mounted mobile crossing frame[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(28): 50-54. [8]Liu C, Peng Q, Xue Z, et al. Effect of different heat treatment processes on microstructure evolution and tensile properties of hot-rolled medium-Mn steel[J]. Transactions of the Indian Institute of Metals, 2020, 73: 2221-2229. [9]Pan H, Ding H, Cai M, et al. Precipitation behavior and austenite stability of Nb or Nb-Mo micro-alloyed warm-rolled medium-Mn steels[J]. Materials Science and Engineering A, 2019, 766: 138371. [10]黄辉辉. Ti-Nb-Mo复合微合金化铁素体钢第二相析出行为及强化机理研究[D]. 武汉: 武汉科技大学, 2018. Huang Huihui. Study on second phase precipitation behavior and strengthening mechanism of Ti-Nb-Mo micro-alloyed ferritic steel[D]. Wuhan: Wuhan University of Science and Technology, 2018. [11]Jiang L, Marceau R K W, Dorin T, et al. Effect of molybdenum on phase transformation and microstructural evolution of strip cast steels containing niobium[J]. Journal of Materials Science, 2019, 54(2): 1769-1784. [12]Cao J, Yong Q, Liu Q, et al. Precipitation of MC phase and precipitation strengthening in hot rolled Nb-Mo and Nb-Ti steels[J]. Journal of Materials Science, 2007, 42: 10080-10084. [13]Uemori R, Chijiiwa R, Tamehiro H, et al. AP-FIM study on the effect of Mo addition on microstructure in Ti-Nb steel[J]. Applied Surface Science, 1994, 76: 255-260. [14]Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning[J]. Acta Metallurgica Sinica (English Letters), 2017, 30: 665-674. [15]Luo H W, Qiu C H, Dong H, et al. Experimental and numerical analysis of influence of carbide onaustenitisation kinetics in 5Mn TRIP steel[J]. Materials Science and Technology, 2014, 30(11): 1367-1377. [16]Luo H, Liu J, Dong H. A novel observation on cementite formed duringintercritical annealing of medium Mn steel[J]. Metallurgical and Materials Transactions A, 2016, 47: 3119-3124. [17]Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity[J]. Acta Materialia, 2016, 121: 202-214. [18]Hong S C, Lim S H, Hong H S, et al. Effects of Nb on strain induced ferrite transformation in C-Mn steel[J]. Materials Science and Engineering A, 2003, 355(1/2): 241-248. [19]Fu J, Li G, Mao X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metallurgical and Materials Transactions A, 2011, 42: 3797-3812. [20]苑少强, 梁国俐, 武会宾. 低碳钢中微合金元素Nb, Mo在析出过程中的相互作用[C]//第九次全国热处理大会论文集(二), 2007. Yuan Shaoqiang, Liang Guoli, Wu Huibin The interaction between microalloying elements Nb and Mo in low carbon steel during precipitation[C]//Proceedings of the Ninth National Heat Treatment Conference (II), 2007. [21]Zhang Z, Sun X, Yong Q, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [22]蔡志辉. 高强塑性中锰钢的组织演变及力学性能的研究[D]. 沈阳: 东北大学, 2015. Cai Zhihui. Study on microstructure evolution and mechanical properties of medium manganese steels with superior strength and ductility[D]. Shenyang: Northeastern University, 2015. [23]Christian J W. The Theory of Transformations in Metals and Alloys[M]. Oxford: Pergamon Press, 1965. [24]Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2011, 65(3): 225-228. [25]彭龙生, 刘春泉, 熊 芬, 等. 轧制方式及热处理工艺对中锰钢组织和性能的影响[J]. 金属热处理, 2023, 48(8): 106-112. Peng Longsheng, Liu Chunquan, Xiong Fen, et al. Effects of rolling method and heat treatment process on microstructure and properties of medium-Mn steel[J]. Heat Treatment of Metals, 2023, 48(8): 106-112. [26]祁晓亮, 李 岩, 定 巍, 等. 含Al中锰TRIP钢原始组织对临界退火后组织与力学性能的影响[J]. 金属热处理, 2022, 47(4): 24-29. Qi Xiaoliang, Li Yan, Ding Wei, et al. Effect of original microstructure of medium manganese TRIP steel containing Al on microstructure and mechanical properties after intercritical annealing[J]. Heat Treatment of Metals, 2022, 47 (4): 24-29. |