[1]Mazloum A, Oddone V, Reich S, et al. Connection between strength and thermal conductivity of metal matrix composites with uniform distribution of graphite flakes[J]. International Journal of Engineering Science, 2019, 139: 70-82. [2]肖 璐, 潘复生. 含铈镁合金组织和性能的研究进展[J]. 金属热处理, 2019, 44(10): 230-236. Xiao Lu, Pan Fusheng. Research status of microstructure and properties of magnesium alloys containing cerium[J]. Heat Treatment of Metals, 2019, 44(10): 230-236. [3]Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41. [4]曾小勤, 王 杰, 应 韬, 等. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411. Zeng Xiaoqin, Wang Jie, Ying Tao, et al. Recent progress on thermal conductivity of magnesium and its alloys[J]. Acta Metallurgica Sinica, 2022, 58(4): 400-411. [5]胡文鑫, 王 玮. 稀土元素对镁合金散热能力的影响及应用趋势[J]. 稀土信息, 2017(10): 8-10. [6]陈志杰, 崔 彤. Mg-4.0Zn-2.0Sr-0.4Ca合金复合涂层的耐腐蚀性能[J]. 金属热处理, 2022, 47(4): 213-218. Chen Zhijie, Cui Tong. Corrosion resistance of Mg-4.0Zn-2.0Sr-0.4Ca alloy composite coating[J]. Heat Treatment of Metals, 2022, 47(4): 213-218. [7]袁家伟, 李 婷, 李兴刚, 等. Mg-4Zn-1Mn镁合金均匀化热处理及导热率[J]. 材料热处理学报, 2012, 33(4): 27-32. Yuan Jiawei, Li Ting, Li Xinggang, et al. Homogenizing heat treatment and thermal conductivity of Mg-4Zn-1Mn magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 27-32. [8]Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2020, 8(1): 78-90. [9]Du X, Du W B, Wang Z H, et al. Simultaneously improved mechanical and thermal properties of Mg-Zn-Zr alloy reinforced by ultra-low content of graphene nanoplatelets[J]. Applied Surface Science, 2021, 536: 2-10. [10]Bazhenov V E, Koltygin A V, Sung M C, et al. Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1567-1577. [11]Yuan J W, Zhang K, Zhang X H, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J]. Journal of Alloys and Compounds, 2013, 578(25): 32-36. [12]Li H C, Zhu X G, Zhang Y, et al. Microstructure, thermal conductivity and mechanical properties of Mg-Zn-Mn-Y quaternary alloys[J]. JMO, 2020, 27(4): 1580-1588. [13]郭鹏杰, 张 星, 李保成, 等. AZ80镁合金第二相体积分数对其拉伸性能的影响[J]. 金属热处理, 2019, 44(3): 46-49. Guo Pengjie, Zhang Xing, Li Baocheng, et al. Effect of secondary phase volume fraction on tensile properties of AZ80 magnesium alloy[J]. Heat Treatment of Metals, 2019, 44(3): 46-49. [14]Zhang W P, Ma M L, Yuan J W, et al. Microstructure and thermophysical properties of Mg-2Zn-xCu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1803-1815. [15]Duley P, Sanyal S, Bandyopadhyay T K, et al. Homogenization-induced age-hardening behavior and room temperature mechanical properties of Mg-4Zn-0.5Ca-0.16Mn (wt%) alloy[J]. Materials and Design, 2019, 164(15): 107554. [16]Du Y Z, Zheng M Y, Xu C, et al. Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca(wt%) alloys[J]. Materials Science & Engineering A, 2013, 576(1): 6-13. [17]Kim B C, Hong C H, Kim J C, et al. Factors affecting the grain refinement of extruded Mg-6Zn-0.5Zr alloy by Ca addition[J]. Scripta Materialia, 2020, 187: 24-29. [18]谢 婷, 王云峰, 刘 轲, 等. Mg-4Zn-xCa合金的微观组织与导热性能[J]. 上海金属, 2022, 44(4): 1-7. Xie Ting, Wang Yunfeng, Liu Ke, et al. Microstructure and thermal conductivity of Mg-4Zn-xCa alloys[J]. Shanghai Metals, 2022, 44(4): 1-7. [19]张 迪, 刘运腾, 林 涛, 等. 挤压态ZK60镁合金的热压缩变形行为[J]. 金属热处理, 2018, 43(1): 33-37. Zhang Di, Liu Yuntao, Lin Tao, et al. Hot compression deformation behavior of extruded ZK60 magnesium alloy[J]. Heat Treatment of Metals, 2018, 43(1): 33-37. [20]Chen X, Zhang D F, Xu J Y, et al. Improvement of mechanical properties of hot extruded and age treated Mg-Zn-Mn-Ca alloy through Sn addition[J]. Journal of Alloys and Compounds, 2021, 850(5): 156711. [21]Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization[J]. Journal of Alloys and Compounds, 2020, 849(30): 156640. [22]Rong W, Zhang Y, Wu Y J, et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys[J]. Material Science and Engineer A, 2019, 740(7): 262-273. [23]Jia L Y, Du W B, Fu J L, et al. Obtaining ultra-high strength and ductility in a Mg-Gd-Er-Zn-Zr alloy via extrusion, pre-deformation and two-stage aging[J]. Acta Metallurgica Sinica, 2021, 34(1): 39-44. [24]Fu W, Dang P F, Guo S G, et al. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy[J]. Journal of Materials Science & Technology, 2023, 134(20): 67-80. [25]Wangand Y N, Huang J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81(1): 11-26. [26]Li D D, Le Q C, Zhou X, et al. Study on the low mechanical anisotropy of extruded Mg-Zn-Mn-Ce-Ca alloy tube in the compression process[J]. Journal of Magnesium and Alloys, 2022, 27: 2213. [27]Qi F G, Zhang D F, Lan W, et al. Microstructure evolution and mechanical properties of ZM71-xCe (x=0.5, 1.0, 2.0) wrough magnesium alloy[J]. Rare Metal Materials and Engineering, 2013, 42(1): 114-119. [28]Wang C, Chen Y, Xiao S. Research and development status of thermal conductivity magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44: 2596-2600. [29]Zhong L P, Peng J, Li M, et al. Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg-0.5Mn alloys[J]. Journal of Alloys and Compounds, 2016, 661(15): 402-410. [30]Zhong L P, Peng J, Sun Y, et al. Microstructure and thermal conductivity of as-cast and as-extruded binary Mg-Mn alloys[J]. Journal of Materials Science & Technology, 2017, 33(11): 1240-1248. [31]Hou J T, Du W B, Wang Z H, et al. Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn matrix composite[J]. Journal of Alloys and Compounds, 2020, 83(15): 155573. |