[1]易伦雄, 高宗余, 陈维雄. 沪通长江大桥高性能结构钢的研发与应用[J]. 桥梁建设, 2015, 45(6): 36-40. Yi Lunxiong, Gao Zongyu, Chen Weixiong. Development and application of high-performance structural steel for Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45(6): 36-40. [2]黄 维, 高真凤, 张志勤. 日本建筑结构用钢板发展现状[J]. 建筑钢结构进展, 2015, 17(1): 1-6. Huang Wei, Gao Zhenfeng, Zhang Zhiqin. Development status of steel plate for building structures in Japan[J]. Progress in Steel Building Structures, 2015, 17(1): 1-6. [3]张圣柱, 程玉峰, 冯晓东, 等. X80管线钢性能特征及技术挑战[J]. 油气储运, 2019, 38(5): 481-495. Zhang Shengzhu, Cheng Yufeng, Feng Xiaodong, et al. Performance characteristics and technical challenges of X80 pipeline steel[J]. Oil and Gas Storage and Transportation, 2019, 38(5): 481-495. [4]何建中. 钢结构用钢及钢结构产品的发展与应用[J]. 包钢科技, 2018, 44(3): 1-8. He Jianzhong. Development and application of steel for steel structure and steel structure products[J]. Science and Technology of Baotou Steel, 2018, 44(3): 1-8. [5]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [6]李 麟. 汽车用高强钢的发展与展望[J]. 上海金属, 2022, 44(3): 1-8. Li Lin. Development and prospect of high strength steel for automobile[J]. Shanghai Metals, 2022, 44(3): 1-8. [7]Misra R D K, Nathani H, Hartmann J E. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering A, 2005, 394(1): 339-352. [8]Rodrigues P C M, Pereloma E V, Santos D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering A, 2000, 283(1): 136-143. [9]李小琳, 王昭东, 邓想涛, 等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51(7): 784-790. Li Xiaolin, Wang Zhaodong, Deng Xiangtao, et al. Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metallurgica Sinica, 2015, 51(7): 784-790. [10]Hu J, Du L X, Dong Y, et al. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel[J]. Materials Characterization, 2019, 152: 21-35. [11]Wen X L, Mei Z, Jiang B, et al. Effect of normalizing temperature on microstructure and mechanical properties of a Nb-V microalloyed large forging steel[J]. Materials Science and Engineering A, 2016, 671: 233-243. [12]Zhang J, Wang F M, Yang Z B, et al. Effect of cooling rate on precipitation behavior and micromechanical properties of ferrite in V-N alloyed steel during a simulated thermomechanical process[J]. Metallurgical and Materials Transactions A, 2017, 48: 6142-6152. [13]杨才福. 钒微合金化钢的技术进展与应用[J]. 钢铁研究学报, 2020, 32(12): 1029-1043. Yang Caifu. Recent development and applications vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020, 32(12): 1029-1043. [14]崔辰硕. V-N微合金钢贝氏体区析出行为及组织性能研究[D]. 沈阳: 东北大学, 2015. [15]Huang H H, Yang G W, Zhao G, et al. Effect of Nb on the microstructure and properties of Ti-Mo microalloyed high-strength ferritic steel[J]. Materials Science and Engineering A, 2018, 736: 148-155. [16]Zhang D Q, Liu G, Zhang K, et al. Effect of Nb microalloying on microstructure evolution and mechanical properties in low carbon medium manganese steel[J]. Materials Science and Engineering A, 2021, 824: 141813. [17]El-Shenawy E, Reda R. Optimization of TMCP strategy for microstructure refinement and flow-productivity characteristics enhancement of low carbon steel[J]. Journal of Materials Research and Technology, 2019, 8: 2819-2831. [18]Anatoliy Z, Valeriy P, Thierry B, et al. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies[J]. Materials Today Communications, 2021, 28: 102598. [19]Roccisano A, Nafisi S, Stalheim D, et al. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel[J]. Materials Characterization, 2021, 178: 111207. [20]张金城, 孙胜辉, 蔡明晖, 等. 控轧控冷对Ti-Mo-Nb复合微合金化低碳钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(1): 155-162. Zhang Jincheng, Sun Shenghui, Cai Minghui, et al. Effect of TMCP on microstructure and mechanical properties of Ti-Mo-Nb microalloyed low carbon steel[J]. Heat Treatment of Metals, 2023, 48(1): 155-162. [21]徐 洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究[D]. 沈阳: 东北大学, 2015. [22]王 权, 孙婷婷, 白雅琼. 冷却速度对超低碳微合金钢组织和性能的影响[J]. 金属热处理, 2015, 40(2): 148-151. Wang Quan, Sun Tingting, Bai Yaqiong. Effect of cooling rate on microstructure and mechanical properties of ultra-low carbon micro-alloyed steel[J]. Heat Treatment of Metals, 2015, 40(2): 148-151. [23]何 博, 彭天恩, 胡学文, 等. Nb对高Ti耐候钢连续冷却后显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 46-51. He Bo, Peng Tianen, Hu Xuewen, et al. Effect of Nb on microstructure and hardness of high Ti weathering steel after continuous cooling[J]. Heat Treatment of Metals, 2022, 47(8): 46-51. [24]张 可, 李昭东, 隋凤利, 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38. Zhang Ke, Li Zhaodong, Sui Fengli, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(1): 31-38. [25]葛紫薇, 张 婧, 辛文彬, 等. Nb-V-Ti-N微合金化结构钢中碳氮化物析出的热力学分析与试验研究[J]. 稀有金属与硬质合金, 2022, 50(3): 57-64, 71. Ge Ziwei, Zhang Jing, Xing Wenbin, et al. Thermodynamic analysis and experimental study on precipitation of carbonitrides in Nb-V-Ti-N microalloyed structural steel[J]. Rare Metals and Cemented Carbides, 2022, 50(3): 57-64, 71. [26]张 婧. 600 MPa级高强钢筋用钢成分与控冷工艺的研究[D]. 北京: 北京科技大学, 2016. [27]Miranda R S, Rezende A B, Fonseca S T, et al. Fatigue and wear behavior of pearlitic and bainitic microstructures with the same chemical composition and hardness using twin-disc tests[J]. Wear, 2022, 494-495: 204253. |