[1]Madsen A C, Mueller F O, Geisert R, et al. Duplex stainless steel pipelines and piping on the north slope[J]. Materials Performance, 1987, 26(2): 49-55. [2]Sieurin H, Sandstrom R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205[J]. Materials Science and Engineering A, 2006, 418: 250-256. [3]Obemdorfer M, Thayer K, Kastenbauer M. Application limits of stainless steels in the petroleum industry[J]. Materials and Corrosion, 2004, 55(3): 174-180. [4]Lillas M, Johansson P, Liu H P. Development of a lean duplex stainless steel[J]. Steel Research International, 2008, 79(6): 466-470. [5]杨晓禹, 田一清, 毛红奎, 等. 热处理工艺对双相不锈钢S32101焊接接头力学性能与微观组织的影响[J]. 热加工工艺, 2019, 48(21): 153-155, 159. Yang Xiaoyu, Tian Yiqing, Mao Hongkui, et al. Effect of heat treatment process on mechanical properties and microstructure of duplex stainless steel S32101 welded joints[J]. Hot Working Technology, 2019, 48(21): 153-155, 159. [6]Dandekar T R, Kumar A, Khatirkar R K, et al. Effect of isothermal aging at 750 ℃ on microstructure and mechanical properties of UNS S32101 lean duplex stainless steel[J]. Materials Today Communications, 2021, 29(5): 102753. [7]Takaki S, Kawasaki K, Kimura Y. Mechanical properties of ultra fine grained steels[J]. Journal of Materials Processing Technology, 2001, 117(3): 359-363. [8]韩宝军, 徐 洲. 钢铁晶粒超细化方法及其研究进展[J]. 材料导报, 2010, 24(1): 99-103. Han Baojun, Xu Zhou. Grain ultra-refinement and its development in steels[J]. Materials Review, 2010, 24(1): 99-103. [9]张 木. 退火温度对双相不锈钢S32101的组织与性能的影响[J]. 工业加热, 2019, 48(1): 29-31. Zhang Mu. Effect of annealing temperature on microstructure and properties of duplex stainless steel S32101[J]. Industrial Heating, 2019, 48(1): 29-31. [10]杨 宇. 钢和铁、镍基合金的物理化学相分析[M]. 上海: 上海科学技术出版社, 198l. [11]兰纳伯格. 钒在微合金化钢中的作用[M]. 北京: 钢铁研究总院, 2000. [12]向红亮, 陈盛涛, 邓丽萍. 固溶温度对Ag2205双相不锈钢组织与性能的影响[J]. 中南大学学报, 2019, 50(5): 1056-1064. Xiang Hongliang, Chen Shengtao, Deng Liping. Effect of solution temperature on microstructure and properties of Ag-bearing 2205 duplex stainless steel[J]. Journal of Central South University, 2019, 50(5): 1056-1064. [13]白青青, 张志宏. 固溶处理温度对2507超级双相不锈钢相比例及力学性能的影响[J]. 金属热处理, 2019, 44(9): 123-127. Bai Qingqing, Zhang Zhihong. Effect of solution treatment temperature on phase ration and mechanical properties of 2507 super duplex stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 123-127. [14]Thridandapani R R, Misra R D K, Mannering T, et al. The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength[J]. Materials Science and Engineering A, 2006, 422(1-2): 285-291. [15]Stanford N, Marceau R K W, Barnett M R. The effect of high yttrium solute concentration on the twinning behavior of magnesium alloys[J]. Acta Material, 2015, 82: 447-456. [16]刘成宝, 许宝玉, 蔡晓辉. 低冷却速度下700 MPa级V, Ti微合金化高强钢组织和性能[J]. 中国冶金, 2014, 24(2): 19-22. Liu Chengbao, Xu Baoyu, Cai Xiaohui. Microstructure and property of 700 MPa grade V/Ti-alloyed steel at lower cooling rate[J]. China Metallurgy, 2014, 24(2): 19-22. [17]李贞顺, 李胜利, 孙卫华, 等. 低氮低钒D36船板钢中析出相的特征及沉淀强化作用[J]. 材料热处理学报, 2012, 33(4): 68-71. Li Zhenshun, Li Shengli, Sun Weihua, et al. Characteristics and strengthening effect of precipitates in low-nitrogen and low-vanadium D36 ship plate steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 68-71. |