[1]江和甫. 对涡轮盘材料的需求及展望[J]. 燃气涡轮试验与研究, 2002, 15(4): 1-6. Jiang Hefu. Requirements and forecast of turbine disk materials[J]. Gas Turbine Experiment and Research, 2002, 15(4): 1-6. [2]张北江, 黄 烁, 张文云, 等. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114. Zhang Beijiang, Huang Shuo, Zhang Wenyun, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica, 2019, 55(9): 1095-1114. [3]杜金辉, 赵光普, 邓 群, 等. 中国变形高温合金研制进展[J]. 航空材料报, 2016, 36(3): 27-39. Du Jinhui, Zhao Guangpu, Deng Qun, et al. Development of wrought superalloy in China[J]. Journal of Aeronautical Materials, 2016, 36(3): 27-39. [4]杜金辉, 吕旭东, 邓 群, 等. GH4169合金研制进展[J]. 中国材料进展, 2012, 31(12): 12-20, 11. Du Jinhui, Lü Xudong, Deng Qun, et al. Progress in GH4169 alloy development[J]. Materials China, 2012, 31(12): 12-20, 11. [5]曲敬龙, 易出山, 陈竞炜, 等. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83. Qu Jinglong, Yi Chushan, Chen Jingwei, et al. Research progress of precipitated phase in GH4720Li superalloy[J]. Journal of Materials Engineering, 2020, 48(8): 73-83. [6]Qu Jinglong, Xie Xingfei, Bi Zhongnan, et al. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy[J]. Journal of Alloys and Compounds, 2019, 785: 918-924. [7]Konkova T, Rahimi S, Mironov S, et al. Effect of strain level on the evolution of microstructure in a recently developed AD730 nickel based superalloy during hot forging[J]. Materials Characterization, 2018, 139: 437-445. [8]Thébaud Louis, Villechaise Patrick, Cormier Jonathan, et al. Relationships between microstructural parameters and time-dependent mechanical properties of a new nickel-based superalloy AD730[J]. Metals, 2015, 5(4): 2236-2251. [9]袁 艺, 杨树峰, 刘 威, 等. 镍基高温合金真空感应熔炼碳氧反应数值模拟[J]. 中国冶金, 2023, 33(2): 73-79. Yuan Yi, Yang Shufeng, Liu Wei, et al. Numerical simulation of carbon-oxygen reaction in vacuum induction melting of nickel-based superalloys[J]. China Metallurgy, 2023, 33(2): 73-79. [10]麻建中, 黄一君, 黄友桥, 等. Nimonic 80A合金螺栓的组织织构及高温应力松弛行为[J]. 中国冶金, 2022, 32(7): 74-79. Ma Jianzhong, Huang Yijun, Huang Youqiao, et al. Texture characteristics and high temperature stress relaxation behaviors of Nimonic 80A alloy bolt[J]. China Metallurgy, 2022, 32(7): 74-79. [11]田 强, 杨曙磊, 秦鹤勇, 等. 大尺寸GH4742合金铸锭夹杂物及析出相分布特征[J]. 中国冶金, 2022, 32(2): 52-59. Tian Qiang, Yang Shulei, Qin Heyong, et al. Characteristics of inclusions and precipitation phase distribution in large size GH4742 superalloy ingot[J]. China Metallurgy, 2022, 32(2): 52-59. [12]吴玉博, 曲敬龙, 史松宜, 等. 固溶冷却介质对GH4720Li合金组织和性能的影响[J]. 中国冶金, 2021, 31(10): 39-45, 85. Wu Yubo, Qu Jinglong, Shi Songyi, et al. Effect of cooling medium on microstructure and mechanical properties in GH4720Li alloy[J]. China Metallurgy, 2021, 31(10): 39-45, 85. [13]李振团, 秦鹤勇, 田 强, 等. 变形参数对GH4742合金动态再结晶及γ′相的影响[J]. 钢铁, 2022, 57(2): 117-126. Li Zhentuan, Qin Heyong, Tian Qiang, et al. Effect of deformation parameters on dynamic recrystallization and γ′-phase of GH4742 superalloy[J]. Iron and Steel, 2022, 57(2): 117-126. [14]孟令胜, 段方震, 安 腾, 等. γ/γ′共晶相对GH4720Li合金耐腐蚀性能的影响[J]. 中国冶金, 2020, 30(7): 35-40. Meng Lingsheng, Duan Fangzhen, An Teng, et al. Effects of γ/γ′ eutectic on corrosion resistance of GH4720Li superalloy[J]. China Metallurgy, 2020, 30(7): 35-40. [15]谷 雨, 杨树峰, 赵 朋, 等. 镍基高温合金GH4738的凝固偏析和碳化物析出行为[J]. 中国冶金, 2021, 31(7): 13-21. Gu Yu, Yang Shufeng, Zhao Peng, et al. Solidification segregation and carbide precipitation behavior of nickel-based superalloy GH4738[J]. China Metallurgy, 2021, 31(7): 13-21. [16]荣 义, 张麦仓, 杨成斌, 等. 优质GH738合金热变形过程中的再结晶机制[J]. 钢铁研究学报, 2021, 33(6): 530-538. Rong Yi, Zhang Maicang, Yang Chengbin, et al. Recrystallization mechanism of high quality GH738 alloy during hot deformation[J]. Journal of Iron and Steel Research, 2021, 33(6): 530-538. [17]Thébaud Louis, Villechaise Patrick, Crozet Coraline, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys?[J]. Materials Science and Engineering A, 2018, 716: 274-283. [18]Seret Anthony, Moussa Charbel, Bernacki Marc, et al. On the coupling between recrystallization and precipitation following hot deformation in a γ-γ′ nickel-based superalloy[J]. Metallurgical and Materials Transactions, 2018, 49: 4199-4213. [19]Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2005, 36(4): 895-905. [20]Xie B, Zhang B, Yu H, et al. Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy[J]. Materials Science and Engineering A, 2020, 784: 139334. |