[1]姜万军, 王金富, 牛存厚, 等. 奥氏体不锈钢管道在石油化工装置的应用[J]. 炼油技术与工程, 2023, 53(9): 35-37. Jiang Wanjun, Wang Jinfu, Niu Cunhou, et al. Application of austenitic stainless steel pipes in petrochemical plants[J]. Refining Technology and Engineering, 2023, 53(9): 35-37. [2]刘振宝, 梁剑雄, 杨哲高, 等. 高强度不锈钢应用及研究进展[J]. 中国冶金, 2022, 32(6): 42-53. Liu Zhenbao, Liang Jianxiong, Yang Zhegao, et al. Progress of application and research on high strength stainless steel[J]. China Metallurgy, 2022, 32(6): 42-53. [3]Li Xiaobing, Gao Ming, Li Haoze, et al. Effect of residual hydrogen content on the tensile properties and crack propagation behavior of a type 316 stainless steel[J]. International Journal of Hydrogen Energy, 2019, 44(45): 25054-25063. [4]宋广懂, 李 鑫, 刘萌萌, 等. C、N含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响[J]. 钢铁钒钛, 2023, 44(1): 135-141. Song Guangdong, Li Xin, Liu Mengmeng, et al. Effect of C and N content on the microstructure and performance of 316H austenitic stainless steel used in sodium-cooled fast reactor heat exchanger[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 135-141. [5]Zhao Lei, Qi Xueyan, Xu Lianyong, et al. Tensile mechanical properties, deformation mechanisms, fatigue behavior and fatigue life of 316H austenitic stainless steel: Effects of grain size[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 44(2): 533-550. [6]崔利民, 李 青, 胡英超, 等. 核电用超纯奥氏体不锈钢316H电渣重熔氢含量控制[J]. 南方金属, 2023(3): 1-3. Cui Limin, Li Qing, Hu Yingchao, et al. Control of hydrogen content by electroslag remelting of ultra-pure austenitic stainless steel 316H for nuclear power[J]. Southern Metals, 2023(3): 1-3. [7]冯 铄, 陈旭东, 汤 瑞, 等. 核用TP316H钢在不同介质环境下的微动磨损性能[J]. 中国机械工程, 2022, 33(13): 1551-1559. Feng Shuo, Chen Xudong, Tang Rui, et al. Fretting wear properties of nuclear tp316h steels under different medium environments[J]. China Mechanical Engineering, 2022, 33(13): 1551-1559. [8]陈 乐, 何 琨, 梁 波, 等. 316不锈钢室温和350 ℃低周疲劳性能研究[J]. 核动力工程, 2017, 38(3): 51-55. Chen Le, He Kun, Liang Bo, et al. Study onlow-cycle fatigue property of 316 stainless steel at room temperature and 350 ℃[J]. Nuclear Power Engineering, 2017, 38(3): 51-55. [9]郭 东, 刘宝胜, 李国栋, 等. Sigma相对316不锈钢在熔融镁合金保护气中腐蚀行为的影响[J]. 太原理工大学学报, 2013, 44(3): 321-325. Guo Dong, Liu Baosheng, Li Guodong, et al. Effect of Sigma on the corrosion behavior of 316 stainless steel in molten magnesium alloy shielding gas[J]. Journal of Taiyuan University of Technology, 2013, 44(3): 321-325. [10]李 昂, 吴 福, 高 蔚, 等. 核电用316H不锈钢的蠕变性能评估[J]. 稀有金属材料与工程, 2021, 50(2): 531-536. Li Ang, Wu Fu, Gao Wei, et al. Creep data prediction for type 316H stainless steel served in nuclear power plant[J]. Rare Metal Materials and Engineering, 2021, 50(2): 531-536. [11]邓帅帅, 尹 嵬, 张 威. 晶粒尺寸对316H奥氏体不锈钢550~650 ℃ 360~165 MPa持久性能的影响[J]. 特殊钢, 2022, 43(3): 95-98. Deng Shuaishuai, Yin Wei, Zhang Wei. Influence of grain size on 550-650 ℃ 360-165 MPa stress rupture property of 316H austenitic stainless steel[J]. Special Steel, 2022, 43(3): 95-98. [12]庄 迎, 尹 嵬. 固溶处理对316H不锈钢中厚板晶粒度的影响[J]. 金属热处理, 2022, 47(12): 43-48. Zhuang Ying, Yin Wei. Effect of solution treatment on grain size of 316H stainless steel medium plate[J]. Heat Treatment of Metals, 2022, 47(12): 43-48. [13]陈志芳, 詹云京. 奥氏体不锈钢锻造及固溶处理的研究[J]. 技术与市场, 2013, 20(7): 145. Chen Zhifang, Zhan Yunjing. Research on forging and solution treatment of austenitic stainless steel[J]. Technology and Market, 2013, 20(7): 145. [14]赵 杰, 万响亮, 柯 睿, 等. 晶粒细化对奥氏体不锈钢高温力学性能的影响[J]. 钢铁研究学报, 2023, 35(1): 88-97. Zhao Jie, Wan Xiangliang, Ke Rui, et al. Effect of grain refinement on mechanical properties of austenitic stainless steels at high temperature[J]. Journal of Iron and Steel Research, 2023, 35(1): 88-97. [15]杨晓雅, 何 岸, 谢甘霖, 等. 核电用奥氏体不锈钢的动态再结晶行为[J]. 工程科学学报, 2015, 37(11): 1447-1455. Yang Xiaoya, He An, Xie Ganlin, et al. Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants[J]. Chinese Journal of Engineering, 2015, 37(11): 1447-1455. [16]Wu Congfeng, Li Shilei, Zhang Changhua, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science, 2016, 51(5): 2529-2539. |