[1]赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020, 39(S1): 527-534, 557-558. Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials Progress in China, 2020, 39(S1): 527-534, 557-558. [2]Fei Y H, Zhou L, Qu H L, et al. The phase and microstructure of TC21 alloy[J]. Materials Science and Engineering A, 2008, 494(1/2): 166-172. [3]张利军, 田军强, 周中波, 等. 热处理制度对TC21钛合金锻件组织及力学性能的影响[J]. 中国材料进展, 2009, 28(S2): 84-87. Zhang Lijun, Tian Junqiang, Zhou Zhongbo, et al. Effects of heat treatment on microstructures and mechanical performances of TC21 titanium alloy forgings[J]. Materials China, 2009, 28(S2): 84-87. [4]赵彦蕾, 李伯龙, 朱知寿, 等. 热处理温度对TC21钛合金微观组织的影响[J]. 材料热处理学报, 2011, 32(1): 14-18. Zhao Yanlei, Li Bolong, Zhu Zhishou, et al. Effect of heat treatment temperature on microstructure of TC21 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(1): 14-18. [5]胡生双, 孟晓川, 王 清, 等. 双重退火工艺对TC21钛合金力学性能和断口形貌的影响[J]. 金属热处理, 2020, 45(5): 110-114. Hu Shengshuang, Meng Xiaochuan, Wang Qing, et al. Effect of double annealing process on mechanical properties and fracture morphology of TC21 titanium alloy[J]. Heat Treatment of Metals, 2020, 45(5): 110-114. [6]胡志杰, 冯军宁, 马忠贤, 等. 我国钛及钛合金热处理标准现状[J]. 金属热处理, 2021, 46(3): 243-246. Hu Zhijie, Feng Junning, Ma Zhongxian, et al. Current status of heat treatment standards for titanium and titanium alloys[J]. Heat Treatment of Metals, 2021, 46(3): 243-246. [7]李佳潼, 刘 冉, 朱远志, 等. TC18钛合金热处理过程中α相的等轴化行为[J]. 金属热处理, 2018, 43(8): 60-64. Li Jiatong, Liu Ran, Zhu Yuanzhi, et al. Isomerization behavior of a phase during heat treatment of TC18 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(8): 60-64. [8]Tarín P, Fernández A L, Simón A G, et al. Transformations in the Ti-5Al-2Sn-2Zr-4Mo-4Cr(Ti-17) alloy and mechanical and microstructural characteristics[J]. Materials Science and Engineering A, 2006, 438-440: 364-368. [9]Wang Y H, Kou H C, Chang H, et al. Influence of solution treatment temperature on phase transformation of TC21 alloy[J]. Materials Science and Engineering A, 2009, 508(1/2): 76-82. [10]Elshaer R N, Ibrahim K M. Effect of cold deformation and heat treatment on microstructure and mechanical properties of TC21 Ti alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1290-1299. [11]Shao H, Zhao Y Q, Ge P, et al. Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure[J]. Materials Science and Engineering A, 2013, 586: 215-222. [12]李周波, 刘 云, 刘 翔, 等. 热处理工艺对钛合金油管组织与力学性能的影响[J]. 热加工工艺, 2022, 51(16): 127-130, 134. Li Zhoubo, Liu Yun, Liu Xiang, et al. Effects of heat treatment process on microstructure and mechanical properties of titanium alloy tubing[J]. Hot Working Technology, 2022, 51(16): 127-130, 134. [13]Liu W Y, Lin Y H, Chen Y H, et al. Effect of different heat treatments on microstructure and mechanical properties of Ti6Al4V titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 634-639. [14]Shi Z F, Guo H Z, Han J Y, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2882-2889. [15]Wang Y L, Song X Y, Ma W, et al. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments[J]. Rare Metals, 2018, 37(7): 568-573. [16]石志峰. TC21钛合金工艺优化及组织性能关系研究[D]. 西安: 西北工业大学, 2016: 5-6. [17]汪冠玺. 热处理对TC21钛合金组织和性能的影响[J]. 河南科技, 2014, 552(22): 56-57. Wang Guanxi. Effect of heat treatment on microstructure and properties of TC21 titanium alloy[J]. Henan Science and Technology, 2014, 552(22): 56-57. [18]Tan C S, Sun Q Y, Xiao L, et al. Slip transmission behavior across α/β interface and strength prediction with a modified rule of mixtures in TC21 titanium alloy[J]. Journal of Alloys and Compounds, 2017, 724: 112-120. [19]雷 鹏. TC16钛合金热处理工艺对微观组织演变及力学性能的影响[D]. 长春: 吉林大学, 2022.[20]Wang Y H, Kou H, Chang H, et al. Influence ofsolution treatment temperature on phase transformation of TC21 alloy[J]. Materials Science and Engineering A, 2009, 508(1/2): 76-82. [21]Ivasishin O M, Markovsky P E, Semiatin S I, et al. Aging response of coarse-and fine-grained titanium alloys[J]. Materials Science and Engineering A, 2005, 405(1/2): 296-305. [22]张 民. 热处理对TC21钛合金组织和性能的影响[D]. 西安: 西北工业大学, 2004. [23]唐 斌, 王义红, 寇宏超, 等. TC21合金低温时效过程中的马氏体分解机制[J]. 材料热处理学报, 2012, 33(1): 49-53. Tang Bin, Wang Yihong, Kou Hongchao et al. Mechanism of martensite decomposition during low temperature ageing process for TC21 alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(1): 49-53. [24]朱宝辉, 曾卫东, 陈 林, 等. 固溶时效工艺对Ti-6Al-6V-2Sn钛合金棒材组织及性能的影响[J]. 中国有色金属学报, 2018, 28(4): 677-684. Zhu Baohui, Zeng Weidong, Chen Lin, et al. Influences of solution and aging treatment process on microstructure and mechanical properties of Ti-6A-6V-2Sn titanium alloy rods[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(4): 677-684. [25]Terlinde G T, Duerig T W, Williams J C. Microstructure, tensile deformation, and fracture in aged Ti 10V-2Fe-3Al[J]. Metallurgical and Materials Transactions A, 1983, 14(10): 2101-2115. |