[1]Ramasamy M, Daniel A A, Nithya M. A review on aluminium (Al7050) metal matrix composite characteristics reinforced with titanium[J]. Materials Today: Proceedings, 2021, 43: 1720-1723. [2]Xiong Yifeng, Wang Wenhu, Shi Yaoyao, et al. Investigation on surface roughness, residual stress and fatigue property of milling in-situ TiB2/7050Al metal matrix composites[J]. Chinese Journal of aeronautics, 2021, 34(4): 451-464. [3]Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia, 2020, 185: 287-299. [4]Duan M, Li Y, Yang X, et al. Mechanical responses of in-situ TiB2/7050 composite subjected to monotonic and cyclic loadings: A comparative study with 7050-Al[J]. International Journal of Fatigue, 2022, 163: 107102. [5]聂金凤, 范 勇, 赵 磊, 等. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015. Nie Jinfeng, Fan Yong, Zhao Lei, et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports, 2021, 35(9): 9009-9015. [6]Chen Jie, Yu Weiwei, Zuo Zhenyu, et al. Effects of in-situ TiB2 particles on machinability and surface integrity in milling of TiB2/2024 and TiB2/7075 Al composites[J]. Chinese Journal of Aeronautics, 2021, 34(6): 110-124. [7]Yilmaz A. The Portevin-Le Chatelier effect: A review of experimental findings[J]. Science and Technology of Advanced Materials, 2011, 12(6): 063001. [8]Choi Y, Ha J, Lee M G, et al. Observation of Portevin-Le Chatelier effect in aluminum alloy 7075-W under a heterogeneous stress field[J]. Scripta Materialia, 2021, 205: 114178. [9]Mansouri L Z, Coër J, Thuillier S, et al. Investigation of Portevin-Le Châtelier effect during Erichsen test[J]. International Journal of Material Forming, 2020, 13: 687-697. [10]Zhu H F, Liu J, Wu Y, et al. Hot deformation behavior and workability of in-situ TiB2/7050Al composites fabricated by powder metallurgy[J]. Materials, 2020, 13: 5319. [11]Zhou P, Song Y, Hua L, et al. Mechanical behavior and deformation mechanism of 7075 aluminum alloy under solution induced dynamic strain aging[J]. Materials Science and Engineering A, 2019, 759: 498-505. [12]洪天然. 原位自生TiB2/2009复合材料固溶时效行为研究[D]. 上海: 上海交通大学, 2016. Hong Tianran. Study on solution and ageing behaviors of in-situ TiB2/2009 composites[D]. Shanghai: Shanghai Jiao Tong University, 2016. [13]Jung S H, Bae G, Kim M, et al. Effect of natural aging time on anisotropic plasticity and fracture limit of Al7075 alloy[J]. Materials Today Communications, 2022, 31: 103553. [14]Matsumoto K, Aruga Y, Tsuneishi H, et al. Effects of precipitation state on serrated flow in Al-Mg (-Zn) alloys[J]. Materials Transactions, 2016, 57(7): 1101-1108. [15]Chen B, Xi X, Gu T, et al. Influence of heat treatment on microstructure evolution and mechanical properties of TiB2/Al 2024 composites fabricated by directed energy deposition[J]. Journal of Materials Research and Technology, 2020, 9(6): 14223-14236. [16]郝世明, 毛建伟, 谢敬佩. 原位内生颗粒增强TiB2/7055铝基复合材料的组织[J]. 材料热处理学报, 2015, 36(5): 29-34. Hao Shiming, Mao Jianwei, Xie Jingpei. Microstructure of in-situ TiB2 particle reinforced 7055 aluminum alloy matrix composites[J]. Transactions of Materials and Heat Treatment, 2015, 36(5): 29-34. [17]Lebedkina T A, Lebyodkin M A. Effect of deformation geometry on the intermittent plastic flow associated with the Portevin-Le Chatelier effect[J]. Acta Materialia, 2008, 56(19): 5567-5574. [18]Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7××× series aluminum alloys: A physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. [19]符师桦, 蔡玉龙, 张青川, 等. 自然时效对6061铝合金锯齿形屈服的影响[J]. 稀有金属材料与工程, 2017, 46(12): 3728-3732. Fu Shihua, Cai Yulong, Zhang Qingchuan, et al. Influence of nature aging on serrated yielding of 6061 Al-based alloy[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3728-3732. [20]张建波, 张永安, 何振波, 等. 自然时效对7N01铝合金组织和性能的影响[J]. 稀有金属, 2012, 36(2): 191-195. Zhang Jianbo, Zhang Yongan, He Zhenbo, et al. Effect of natural ageing on properties and microstructure of 7N01 aluminum alloys[J]. Chinese Journal of Rare Metals, 2012, 36(2): 191-195. [21]Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7××× series aluminum alloys: A physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. [22]Wciślik W, Lipiec S. Void-induced ductile fracture of metals: Experimental observations[J]. Materials, 2022, 15: 6473. [23]Cao J, Li F, Li P, et al. Analysis of ductile-brittle competitive fracture criteria for tension process of 7050 aluminum alloy based on elastic strain energy density[J]. Materials Science and Engineering A, 2015, 637: 201-214. [24]Wang Y, Pan Q, Wei L, et al. Fracture toughness and fatigue crack growth analysis of 7050-T7451 alloy thick plate with different thicknesses[J]. Journal of Central South University, 2014, 21: 2977-2983. [25]Han G, Zhang W, Zhang G, et al. High-temperature mechanical properties and fracture mechanisms of Al-Si piston alloy reinforced with in situ TiB2 particles[J]. Materials Science and Engineering A, 2015, 633 161-168. |