[1]商国强, 朱知寿, 常 辉, 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286-291. Shang Guoqiang, Zhu Zhishou, Chang Hui, et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2011, 35(2): 286-291. [2]Bermingham M J, Kent D, Pace B, et al. High strength heat-treatable β-titanium alloy for additive manufacturing[J]. Materials Science and Engineering A, 2020, 791: 139646-139652. [3]Wu C, Zhan M. Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments[J]. Journal of Alloys and Compounds, 2019, 805: 1144-1160. [4]Xin S, Zhang J, Mao X, et al. Research and development of low-cost titanium alloys[J]. Journal of Physics: Conference Series, 2019, 1347(1): 12022-12029. [5]何超威, 张可召, 杨 丹, 等. 热处理工艺对Ti-3Al-6Mo-2Fe-2Zr合金组织和性能的影响[J]. 金属热处理, 2021, 46(12): 241-246. He Chaowei, Zhang Kezhao, Yang Dan, et al. Influence of heat treatment process on microstructure and properties of Ti-3Al-6Mo-2Fe-2Zr alloy[J]. Heat Treatment of Metals, 2021, 46(12): 241-246. [6]王安东, 张禄祥, 陈彩凤, 等. 固溶时效处理对Ti-5322 钛合金组织与性能的影响[J]. 金属热处理, 2020, 45(12): 24-28. Wang Andong, Zhang Luxiang, Chen Caifeng, et al. Effect of solution and aging treatment on microstructure and tensile properties of Ti-5322 alloy[J]. Heat Treatment of Metals, 2020, 45(12): 24-28. [7]王 亮, 颜 卉, 姜博涛, 等. Fe代替V制备低成本钛合金的组织与性能[J]. 特种铸造及有色合金, 2022, 42(5): 535-539. Wang Liang, Yan Hui, Jiang Botao, et al. Microstructure and mechanical properties of the low cost titanium alloy with substitute of Fe for V[J]. Special Casting and Nonferrous Alloys, 2022, 42(5): 535-539. [8]Zhou W, Ge P, Zhao Y Q, et al. Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment[J]. Rare Metal Materials and Engineering, 2017, 46(10): 2852-2856. [9]Song Z Y, Sun Q Y, Xiao L, et al. Precipitation behavior and tensile property of the stress-aged Ti-10Mo-8V-1Fe-3.5Al alloy[J]. Materials Science and Engineering A, 2011, 528(12): 4111-4114. [10]Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr[J]. Materials and Design, 2015, 66: 596-610. [11]李明兵, 王新南, 商国强, 等. TC32 钛合金不同热处理工艺下的组织性能及断裂机制[J]. 金属热处理, 2021, 46(4): 112-117. Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. Microstructure, mechanical properties and fracture mechanism of TC32 titanium alloy with different heat treatment processes[J]. Heat Treatment of Metals, 2021, 46(4): 112-117. [12]王鹏宇, 张浩宇, 张志鹏, 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响[J]. 材料研究学报, 2020, 34(6): 473-480. Wang Pengyu, Zhang Haoyu, Zhang Zhipeng, et al. Effect of solution temperature on microstructure and tensile properties of a metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn[J]. Chinese Journal of Materials Research, 2020, 34(6): 473-480. [13]Mora L, Quesne C, Penelle R. Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties[J]. Journal of Materials Research, 1996, 11(1): 89-99. [14]Mikhaylovskaya A V, Portnoy V K. Analysis of the softening of heterophase aluminum alloys with a eutectic component[J]. Russian Journal of Non-Ferrous Metals, 2012, 53(5): 386-391. [15]Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nature Communications, 2016, 7(1): 11176-11183. |