[1]王祝堂, 田荣璋. 铝合金及其加工手册[M]. 2版. 长沙: 中南大学出版社, 2000: 232-250. [2]郭 成, 李宝绵, 张海涛, 等. 高强耐蚀5×××系铝合金的研究现状及发展趋势[J]. 稀有金属, 2018, 42(8): 878-884. Guo Cheng, Li Baomian, Zhang Haitao, et al. Research status and development trend of high-strength and corrosion-resistant 5××× series aluminum alloy[J]. Chinese Journal of Rare Metals, 2018, 42(8): 878-884. [3]黄显吞, 吴顺意. 电缆屏蔽用5154铝镁合金线的应用前景[J]. 世界有色金属, 2016, 41(6): 184-185. Huang Xiantun, Wu Shunyi. The application prospect of the 5154 aluminum magnesium alloy wire cable shielding[J]. World Nonferrous Metals, 2016, 41(6): 184-185. [4]黄显吞, 吴顺意, 韦旭林. 退火温度对5154A铝镁合金线组织与力学性能的影响[J]. 热加工工艺, 2022, 51(8): 116-118. Huang Xiantun, Wu Shunyi, Wei Xulin. Effects of annealing temperature on microstructure and mechanical properties of 5154A Al-Mg alloy wire[J]. Hot Working Technology, 2022, 51(8): 116-118. [5]张 桓, 贾 伟, 赵立洋, 等. 退火温度对5154铝合金铆钉线力学性能的影响[J]. 特种铸造及有色合金, 2021, 41(8): 979-981. Zhang Huan, Jia Wei, Zhao Liyang, et al. Effects of annealing temperature on mechanical properties of 5154 alloy for rivet wire[J]. Special Casting and Nonferrous Alloys, 2021, 41(8): 979-981. [6]谢 屹, 尹登峰, 余鑫祥, 等. 退火工艺对5154铝合金导线性能的影响[J]. 轻合金加工技术, 2013, 41(5): 45-48. Xie Yi, Yin Dengfeng, Yu Xinxiang, et al. Effect of annealing process on properties of 5154 aluminum alloy wire[J]. Light Alloy Fabrication Technology, 2013, 41(5): 45-48. [7]黄显吞. 5154铝镁合金线材晶粒细化技术研究进展[J]. 特种铸造及有色合金, 2014, 34(4): 364-367. Huang Xiantun. Progress in the grain refinement technology on 5154 aluminum magnesium alloy wire[J]. Special Casting and Nonferrous Alloys, 2014, 34(4): 364-367. [8]强 华, 张芝民, 张文慧, 等. 挤压比对5154铝合金微结构、织构和力学性能的影响[J]. 锻压技术, 2018, 43(3): 154-159. Qiang Hua, Zhang Zhimin, Zhang Wenhui, et al. Influence of extrusion ratios on microstructure, texture and mechanical property of aluminum alloy 5154[J]. Forging and Stamping Technology, 2018, 43(3): 154-159. [9]付世强, 廖 斌. 5154铝合金均匀化温度研究[J]. 有色金属加工, 2017, 46(1): 42-45, 35. Fu Shiqiang, Liao Bin. Study of homogenization temperature of 5154 aluminum alloy[J]. Nonferrous Metals Processing, 2017, 46(1): 42-45, 35. [10]何建贤, 韦祖祥, 李小华, 等. 退火温度对5154合金冷轧板组织和性能的影响[J]. 有色金属加工, 2023, 52(3): 14-17. He Jianxian, Wei Zuxiang, Li Xiaohua, et al. Effect of annealing temperature on microstructure and properties of 5154 alloy cold rolled sheet[J]. Nonferrous Metals Processing, 2023, 52(3): 14-17. [11]黄淑萍, 黄 亮, 陈绍文, 等. 退火温度对5456铝合金冷轧板材组织与性能的影响[J]. 金属热处理, 2019, 44(8): 196-199. Huang Shuping, Huang Liang, Chen Shaowen, et al. Effect of annealing temperature on microstructure and mechanical properties of 5456 aluminum alloy cold rolled sheet[J]. Heat Treatment of Metals, 2019, 44(8): 196-199. [12]Choi S H, Choi J K, Kim H W, et al. Effect of reduction ratio on annealing texture and r-value directionality for a cold rolled Al-5%Mg alloy[J]. Materials Science and Engineering A, 2009, 519(1-2): 77-87. [13]李慧中, 高 峰, 李鹏伟, 等. 退火温度对冷轧5083铝合金织构及塑性各向异性的影响[J]. 材料热处理学报, 2020, 41(5): 57-65. Li Huizhong, Gao Feng, Li Pengwei, et al. Effect of annealing temperature on texture and plastic anisotropy of cold-rolled 5083 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 57-65. [14]Zhang K F, Yan H H. Deformation behavior of fine-grained 5083 Al alloy at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 307-311. [15]陈 伟, 谢普初, 刘东升, 等. 晶粒尺寸对高纯铝板材层裂特性的影响[J]. 爆炸与冲击, 2021, 41(4): 100-108. Chen Wei, Xie Puchu, Liu Dongsheng, et al. Effects of grain size on the spall behaviors of high-purity aluminum plates[J]. Explosion and Shock Waves, 2021, 41(4): 100-108. [16]兰胜威, 曾新吾. 晶粒度对纯铝动态力学性能的影响[J]. 爆炸与冲击, 2008, 28(5): 462-466. Lan Shengwei, Zeng Xinwu. Effect of grain size on dynamic mechanical properties of pure aluminum[J]. Explosion and Shock Waves, 2008, 28(5): 462-466. [17]Zhang L, Liu G Y, Xie H Y. Hall-Petch relation and grain boundary slipping in Al-Mg-Sc alloys with fine equiaxed grain structure[J]. Materials Characterization, 2022, 194: 112472. [18]张 义, 马青梅, 李玉博, 等. 变形率及退火制度对Al-Mg合金薄板力学性能及微观组织的影响[J]. 金属热处理, 2019, 44(4): 185-189. Zhang Yi, Ma Qingmei, Li Yubo, et al. Effects of reduction and annealing on mechanical properties and microstructure of Al-Mg alloy sheet[J]. Heat Treatment of Metals, 2019, 44(4): 185-189. [19]马鹏程. 5×××系铝合金板材的组织和织构对其成形性和锯齿屈服行为的影响[D]. 北京: 北京科技大学, 2015. [20]白云瑞, 陶 杰, 郭训忠, 等. 6061铝合金板料的成形性能及数值模拟研究[J]. 锻压技术, 2013, 38(4): 177-181. Bai Yunrui, Tao Jie, Guo Xunzhong, et al. Formability and numerical simulation investigation of 6061 aluminum alloy plates[J]. Forging and Stamping Technology, 2013, 38(4): 177-181. [21]秋 艳. AA6016铝合金热处理及拉深成形工艺研究[J]. 塑性工程学报, 2017, 24(6): 43-47. Qiu Yan. Study of heat treatment and deep drawing process for AA6016 aluminum alloy[J]. Journal of Plasticity Engineering, 2017, 24(6): 43-47. [22]田 妮, 刘 威, 石 旭, 等. 汽车车身用Al-Mg-Si-Cu-Mn合金板材强度与n值的相关性研究[J]. 轻合金加工技术, 2021, 49(6): 47-53, 59. Tian Ni, Liu Wei, Shi Xu, et al. Study on the correlation between strength and n value of Al-Mg-Si-Cu-Mn alloy sheet for automobile body[J]. Light Alloy Fabrication Technology, 2021, 49(6): 47-53, 59. [23]刘贞山, 曹以恒, 赵经纬, 等. 立方织构对新型Al-Mg-Si-Zn合金面内各向异性的影响[J]. 中国材料进展, 2019, 38(3): 295-300. Liu Zhenshan, Cao Yiheng, Zhao Jingwei, et al. Effect of Cube texture on the planar anisotropy in a novel Al-Mg-Si-Zn alloy[J]. Materials China, 2019, 38(3): 295-300. [24]Narayanasamy R, Ravindran R, Manonmani K, et al. A crystallographic texture perspective formability investigation of aluminum 5052 alloy sheet at various annealing temperatures[J]. Materials and Design, 2009, 30: 1804-1817. [25]Leu D K. Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing[J]. International Journal of Machine Tools and Manufacture, 1997, 37: 201-213. [26]Shamik B, Sushanta K P, Myoung-Gyu L. Formability and fracture in deep drawing sheet metals: Extended studies for pre-strained anisotropic thin sheets[J]. International Journal of Mechanical Sciences, 2020, 170: 105346. [27]Narayanasamy R, Ponalagusamy R, Raghuraman S. The effect of strain rate sensitivity on theoretical prediction of limiting draw ratio for cylindrical cup drawing process[J]. Materials and Design, 2008, 29: 884-890. |