[1]徐进军, 康 唯, 都昌兵, 等. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程, 2017, 40(3): 132-137. Xu Jinjun, Kang Wei, Du Changbing, et al. Research status and development trends of Al-Li alloys for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering, 2017, 40(3): 132-137. [2]杨富强, 熊 慧, 任柏峰, 等. 先进铝锂合金的发展及应用[J]. 世界有色金属, 2018(22): 1-5. Yang Fuqiang, Xiong Hui, Ren Baifeng, et al. Development and application of advanced aluminum-lithium alloy[J]. World Nonferrous Metals, 2018(22): 1-5. [3]Wang Y X, Zhao G Q, Xu X, et al. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing[J]. Materials Science and Engineering A, 2018, 727: 78-89. [4]Pan D, Zhou S, Zhang Z, et al. Effects of Sc(Zr) on the microstructure and mechanical properties of as-cast Al-Mg alloys[J]. Materials Science and Technology, 2017, 33(6): 751-757. [5]Nayan N, Gurao N P, Murty S V S N, et al. Microstructure and micro-texture evolution during large strain deformation of an Al-Cu-Li alloy AA2195[J]. Materials and Design, 2015, 65: 862-868. [6]崔成松, 范洪波, 来忠红, 等. 喷射沉积Al-3.8Li-0.8Mg-0.4Cu-0.13Zr合金的显微组织与拉伸性能[J]. 中国有色金属学报, 1996(4): 130-134. Cui Chengsong, Fan Hongbo, Lai Zhonghong, et al. Microstructure and tensile properties of rapidly solidified Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy by spray deposition process[J]. The Chinese Journal of Nonferrous Metals, 1996(4): 130-134. [7]Ye Z H, Cai W X, Li J F, et al. Impact of annealing prior to solution treatment on aging precipitates and intergranular corrosion behavior of Al-Cu-Li alloy 2050[J]. Metallurgical and Materials Transactions, 2018, 49(6): 2471-2486. [8]Ma Y, Geng J W, Chen Z, et al. Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite[J]. Engineering Fracture Mechanics, 2019, 207: 23-35. [9]徐桂芳, 顾晓栋, 龙江馨, 等. 固溶处理对喷射成形2195铝锂合金组织和性能的影响[J]. 材料热处理学报, 2019, 40(2): 62-68. Xu Guifang, Gu Xiaodong, Long Jiangxin, et al. Effect of solution treatment on microstructure and mechanical properties of spray formed 2195 Al-Li alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(2): 62-68. [10]Zheng X W, Lou P, Chu Z H, et al. Plastic flow behavior and microstructure characteristics of light-weight 2060 Al-Li alloy[J]. Materials Science and Engineering A, 2018, 736: 465-471. [11]Choi S W, Kim Y M, Lee K M, et al. The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al-Si-Cu-Mg foundry alloys[J]. Journal of Alloys and Compounds, 2014, 617: 654-659. [12]Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a Al-Cu-Li 2198 alloy[J]. Materials and Design, 2014, 63: 368-374. [13]乔 勇, 冯朝辉, 柴丽华, 等. 固溶处理对新型铝锂合金X2A66组织和性能的影响[J]. 热加工工艺, 2017, 46(2): 208-211, 214. Qiao Yong, Feng Zhaohui, Chai Lihua, et al. Effects of solution treatment on microstructure and properties of novel Al-Li alloy X2A66[J]. Hot Working Technology, 2017, 46(2): 208-211, 214. [14]Huang J, Ardell A J. Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys[J]. Le Journal de Physique Colloques, 1987, 48(C3): 373-383. [15]胡赓祥, 蔡 珣, 戎咏华, 等. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010. [16]崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2011. [17]罗家豪, 陈重毅, 宿鹏吉, 等. 降低冷轧取向硅钢残余应力和位错密度的磁-热耦合工艺[J]. 金属热处理, 2022, 47(11): 111-116. Luo Jiahao, Chen Zhongyi, Su Pengji, et al. Magnetic-thermal coupling to reduce residual stress and dislocation density of cold-rolled oriented silicon steel[J]. Heat Treatment of Metals, 2022, 47(11): 111-116. [18]孟 杨, 任 群, 鞠新华, 等. 利用局域取向差衡量变形金属中的位错密度[J]. 材料热处理学报, 2014, 35(11): 122-128. Meng Yang, Ren Qun, Ju Xinhua, et al. Evaluation of dislocation density by local grain misorientation in deformed metals[J]. Transactions of Materials and Heat Treatment, 2014, 35(11): 122-128. |