[1]黄 琳, 孙 艳, 郭唯明, 等. 当前新材料及所需战略性矿产概述[J]. 中国矿业, 2018, 27(8): 1-8. Huang Lin, Sun Yan, Guo Weiming, et al. Summary of current new materials and necessary strategic mineral resources[J]. China Mining Magazine, 2018, 27(8): 1-8. [2]陈厚泉, 王 莉. 电力线损的主要因素以及解决对策分析[J]. 通讯世界, 2017(22): 180-181. [3]杨东升. 电力供电损耗原因分析与对策[J]. 科技风, 2018(2): 97. [4]王业科, 陶 涛, 牛 强, 等. 现代冷轧板带绿色制造与智能制造[C]//第十四届中国钢铁年会. 中国重庆, 2023. [5]王国栋. 近年我国轧制技术的发展、现状和前景[J]. 轧钢, 2017, 34(1): 1-8. Wang Guodong. Development, current situation and prospect of Chinese steel rolling technology in recent years[J]. Steel Rolling, 2017, 34(1): 1-8. [6]陆春洁, 邵春娟, 镇 凡, 等. 低Ti含量(0~0.15%)对高强钢耐磨性的影响[J]. 金属热处理, 2023, 48(5): 104-109. Lu Chunjie, Shao Chunjuan, Zhan Fan, et al. Effect of low Ti content(0-0.15%) on wear resistance of high strength steel[J]. Heat Treatment of Metals, 2023, 48(5): 104-109. [7]张宏亮, 冯光宏, 王宝山. 直轧条件下含Nb钢筋中Nb(C, N)的析出强化机理及控冷工艺优化[J]. 金属热处理, 2021, 46(8): 133-138. Zhang Hongliang, Feng Guanghong, Wang Baoshan. Strengthening mechanism of Nb(C, N)precipitation and controlled cooling process optimization of Nb-containing steel bars under direct rolling condition[J]. Heat Treatment of Metals, 2021, 46(8): 133-138. [8]Zhang S J, Li R G, Kang H J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering A, 2017, 680: 108-114. [9]Krishna S C, Karthick N K, Rao G S, et al. High strength, utilizable ductility and electrical conductivity in cold rolled sheets of Cu-Cr-Zr-Ti alloy[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 787-793. [10]Xie M, Liu J, Lu X, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification[J]. Materials Science and Engineering A, 2001, 304: 529-533. [11]Li H, Xie S, Wu P, et al. Study on improvement of conductivity of Cu-Cr-Zr alloys[J]. Rare Metals, 2007, 26(2): 124-130. [12]彭政务. 钛微合金化热轧高强度钢板的强韧化机理研究[D]. 广州: 华南理工大学, 2016. [13]Honeycombe R W K, Mehl R F, et al. Transformation from austenite in alloy steels[J]. Metallurgical Transactions A, 1976, 7: 915-936. [14]Guang X, Gan X L, Ma G J, et al. The development of Ti-alloyed high strength microalloy steel[J]. Materials and Design, 2010, 31(6): 2891-2896. [15]Chaudhuri S P, Mahanti R K, Sivaramakrishnan C S, et al. Physical properties of some thermomechanically processed microalloyed steels[J]. Materials and Design, 2002, 23(5): 489-496. [16]Palmiere E J, Garcia C I, De Ardo A J. The influence of niobium supersaturation in austenite on the static recrystallization behavior of low carbon microalloyed steels[J]. Metallurgical and Materials Transactions A, 1996, 27(4): 951-960. [17]Weiss I, Jonas J J. Dynamic precipitation and coarsening of niobium carbonitrides during the hot compression of HSLA steels[J]. Metallurgical Transactions A, 1980, 11(3): 403-410. [18]Wang Z Q, Zhang H, Guo C H, et al. Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels[J]. Journal of Materials Science, 2016, 51(10): 4996-5007. [19]Hansen S S, Sande J B V, Cohen M. Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steels[J]. Metallurgical Transactions A, 1980, 11(3): 387-402. [20]Wang Z Q, Mao X P, Yang Z G, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel[J]. Materials Science and Engineering A, 2011, 529: 459-467. [21]Liu W J, Jonas J J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J]. Metallurgical Transactions A, 1988, 19(6): 1403-1413. [22]Medina S F, Quispe A, Gómez M. Strain induced precipitation effect on austenite static recrystallisation in microalloyed steels[J]. Materials Science and Technology, 2003, 19(1): 99-108. [23]Andrade H L, Akben M G, Jonas J J. Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metallurgical Transactions A, 1983, 14(10): 1967-1977. [24]夏继年. 钛微合金钢中纳米碳化钛的析出控制研究[D]. 镇江: 江苏大学, 2018. [25]龚维幂, 杨才福, 张永权, 等. 低碳钒氮微合金钢中V(C, N)在奥氏体中的析出动力学[J]. 钢铁研究学报, 2004(6): 41-46. Gong Weimi, Yang Caifu, Zhang Yongquan, et al. Precipitation kinetics of V(C, N) in austenite for low carbon steel microalloyed with vanadium and nitrogen[J]. Journal of Iron and Steel Research, 2004(6): 41-46. [26]方 芳, 雍岐龙, 杨才福, 等. V(C, N)在V-N微合金钢铁素体中的析出动力学[J]. 金属学报, 2009, 45(5): 625-629. Fang Fang, Yong Qilong, Yang Caifu, et al. Precipitating kinetics of V(C, N) in ferrite of V-N microalloying steel[J]. Acta Metallurgica Sinica, 2009, 45(5): 625-629. [27]苑少强, 杨善武, 武会宾, 等. 多元微合金钢中的应变诱导复合析出[J]. 北京科技大学学报, 2003(5): 414-418. Yuan Shaoqiang, Yang Shanwu, Wu Huibin, et al. Strain-induced precipitation in a multi-microalloyed steel[J]. Journal of University of Science and Technology Beijing, 2003(5): 414-418. [28]曹建春. 铌钼复合微合金钢中碳氮化物沉淀析出研究[D]. 昆明: 昆明理工大学, 2006. [29]Tang X C, Kuang C, Zhou W L, et al. Effect of annealing process on microstructure and electrical conductivity of cold-rolled Ti microalloyed conductive steel[J]. Materials Characterization, 2023, 201: 112930. [30]李晓林, 蔡庆伍, 孙 林, 等. Ti-Mo微合金钢中第二相临界转换尺寸研究[J]. 热加工工艺, 2015, 44(22): 219-223. Li Xiaolin, Cai Qinwu, Sun Lin, et al. Study on critical transition size of second phase in Ti-Mo micro-alloyed steel[J]. Hot Working Technology, 2015, 44(22): 219-223. [31]马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为[J]. 材料工程, 2015, 43(11): 24-31. Ma Jiangnan, Yang Caifu, Wang Ruizhen. Microstructure transformation and ferrite dynamic recrystallization behavior of microalloyed steel during temperature-reversion deforming[J]. Journal of Materials Engineering, 2015, 43(11): 24-31. [32]Wu Y, Li Y, Lu J Y, et al. Correlations between microstructures and properties of Cu-Ni-Si-Cr Alloy[J]. Materials Science and Engineering A, 2018, 731: 403-412. [33]Tian L, Anderson I, Riedemann T, et al. Modeling the electrical resistivity of deformation processed metal-metal composites[J]. Acta Materialia, 2014, 77: 151-161. |