[1]黄群英, 郁金南, 万发荣, 等. 聚变堆低活化马氏体钢的发展[J]. 核科学与工程, 2004, 24(1): 56-64, 35. Hang Qunying, Yu Jinnan, Wan Farong, et al. The development of low activation martensitic steels for fusion reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2004, 24(1): 56-64, 35. [2]Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials, 2007, 371(1-3): 37-52. [3]史显波, 赵连玉, 严 伟, 等. Ta在Fe-C-Ta合金中的强化作用研究[J], 钢铁研究学报, 2013, 25(12): 58-62. Shi Xianbo, Zhao Lianyu, Yan Wei, et al. Study on strengthening effect of tantalum in Fe-C-Ta alloy[J]. Journal of Iron and Steel Research, 2013, 25(12): 58-62. [4]石全强. 新型低活化马氏体钢的制备及其抗氧化性能与表面改性研究[D]. 北京: 中国科学院大学, 2016. [5]夏礼栋, 霍晓杰, 张 弛, 等. 低活化钢的氦离子辐照损伤行为[J]. 金属热处理, 2022, 47(7): 211-215. Xia Lidong, Huo Xiaojie, Zhang Chi, et al. Helium ion irradiation damage behavior in a reduced activation steel[J]. Heat Treatment of Metals, 2022, 47(7): 211-215. [6]Kentaro A, Yosyun Y, Takemi Y, et al. Effects of Ta and Nb on microstructures and mechanical properties of low activation ferritic 9Cr-2W-0.2V steel for fusion reactor[J]. ISIJ International, 1990, 30(11): 937-946. [7]Hasegawa T, Tomita Y, Kohyama A. Influence of tantalum and nitrogen contents, normalizing condition and TMCP process on the mechanical properties of low-activation 9Cr-2W-0.2V-Ta steels for fusion application[J]. Journal of Nuclear Materials, 1998, 258-263(10): 1153-1157. [8]Klueh R L, Alexander D J, Rieth M. The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel[J]. Journal of Nuclear Materials, 1999, 273(2): 146-154. [9]Klueh R L, Alexander D J, Sokolov M A. Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5-9Cr-WVTaB steels[J]. Journal of Nuclear Materials, 2002, 304(2/3): 139-152. [10]Shankar V, Mariappan K, Nagesha A, et al. Effect of tungsten and tantalum on the low cycle fatigue of reduced activation ferritic/martensitic steels[J]. Fusion Engineering and Design, 2012, 87(4): 318-324. [11]沙卫星, 王 坤, 陈秀强, 等. 30t EAF-LF-VOD/VHD 流程冶炼 MHTlOTa 钢钽含量控制的工艺实践[J]. 特殊钢, 2016, 37(2): 44-46. Sha Weixing, Wang Kun, Chen Xiuqiang, et al. Practice of process for control of tantalum content in steel MHTlOTa melting by 30t EAF-LF-VOD/VHD flowsheet[J]. Special Steel, 2016, 37(2): 44-46. [12]黄天阳, 郑家圣, 田林海, 等. 钨表面WTaVNbMo难熔高熵合金层的组织与性能[J]. 金属热处理, 2023, 48(5): 6-11. Huang Tianyang, Zheng Jiasheng, Tian Linhai, et al. Microstructure and properties of WTaVNbMo refractory high-entropy alloy layer on W surface[J]. Heat Treatment of Metals, 2023, 48(5): 6-11. [13]丁永昌. 特种熔炼[M]. 北京: 冶金工业出版社, 1995: 50. Ding Yongchang. Special Melting[M]. Beijing: Metallurgical Industry Press, 1995: 50. [14]Russell H, Jones V, Zackay F, et al. Laves phase precipitation in Fe-Ta alloys[J]. Metallurgical Transactions, 1972, 3(11): 2835-2842. [15]黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2002: 67. Hang Xihu. Principle of Iron and Steel Metallurgy[M]. Beijing: Metallurgical Industry Press, 2002: 67. [16]谢 有, 邓向阳, 李仕超, 等. 含0.029%铌F40MnVS钢连铸坯微米级大颗粒NbC特征及生成机理研究[J]. 特殊钢, 2023, 44(1): 49-54. Xie You, Deng Xiangyang, Li Shichao, et al. Characteristics and generating mechanism of micron-sized large NbC particle in 0.029%Nb F40MnVS steel continuons casting bloom[J]. Special Steel, 2023, 44(1): 49-54. [17]周 云, 杨晓伟, 陈焕德, 等. 铌含量及铸锭加热温度对HRB400螺纹钢组织性能的影响[J]. 特殊钢, 2021, 42(1): 66-70. Zhou Yun, Yang Xiaowei, Chen Huande, et al. Effect of niobium content and ingot heating temperature on microstructure and property of HRB400 steel rebar[J]. Special Steel, 2021, 42(1): 66-70. [18]Takechi H. 如何用铌改善钢的性能—含铌钢生产技术[M]. 付俊岩, 尚成嘉, 译. 北京: 冶金工业出版社, 2007: 3. [19]梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 510. Liang Yingjiao, Che Yinchang. Handbook of Thermodynamic Data for Inorganic Compounds[M]. Shenyang: Northeastern University Press, 1993: 510. |