[1]刘 萌, 李新亚, 臧 勇, 等. 固溶成形工艺对6016铝合金组织及力学性能的影响[J]. 金属热处理, 2023, 48(2): 138-143. Liu Meng, Li Xinya, Zang Yong, et al. Effect of solution forming process on microstructure and mechanical properties of 6016 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(2): 138-143. [2]胡 武, 吴艳梅, 黄显赞, 等. 预处理对6082铝合金型材性能的影响[J]. 金属热处理, 2023, 48(7): 143-147. Hu Wu, Wu Yanmei, Huang Xianzan, et al. Effect of pre-treatment on properties of 6082 aluminum alloy profiles[J]. Heat Treatment of Metals, 2023, 48(7): 143-147. [3]王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 1-39. Wang Binwen, Chen Xianmin, Su Yunlai, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 1-39. [4]郑元凯, 李龙飞, 金 康, 等. Cu含量对重力铸造Al-Cu-Mg-Sc合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(5): 53-58. Zheng Yuankai, Li Longfei, Jin Kang, et al. Influence of Cu content on microstructure and mechanical properties of Al-Cu-Mg-Sc alloy fabricated by gravity die casting[J]. Heat Treatment of Metals, 2022, 47(5): 53-58. [5]杨春苗, 王淑慧, 刘文文, 等. 热处理制度对喷射成形7A50铝合金组织性能的影响[J]. 金属热处理, 2021, 46(12): 236-240. Yang Chunmiao, Wang Shuhui, Liu Wenwen, et al. Influence of heat treatment on microstructure and properties of spray formed 7A50 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(12): 236-240. [6]段 伟, 简思聪, 伍超群, 等. 基于CCD的多级时效工艺对6061铝合金性能的影响[J]. 金属热处理, 2021, 46(10): 96-100. Duan Wei, Jian Sicong, Wu Chaoqun, et al. Effect of multi-stage aging on properties of 6061 aluminum alloy via CCD method[J]. Heat Treatment of Metals, 2021, 46(10): 96-100. [7]王 荣, 吴晓春, 闵永安. 铝合金压铸模的焊合熔损现象及其预防措施[J]. 金属热处理, 2005, 30(2): 68-72. Wang Rong, Wu Xiaochun, Min Yongan. Soldering and melting-loss phenomenon & their preventive measures in aluminum alloy casting dies[J]. Heat Treatment of Metals, 2005, 30(2): 68-72. [8]Troitskii O A, Likhtman V I. The anisotropy of the action of electron and γ radiation on the deformation process of brittle zinc single crystals[J]. Soviet Physics Doklady, 1963, 148: 332-334. [9]Kravchenko V Y. Effect of directed electron beam on moving dislocations[J]. Soviet Physics JETP, 1967, 24(6): 1676-1688. [10]Alshits V I, Darinskaya E V, Kazakova O L, et al. Magnetoplastic effect in nonmagnetic crystals[J]. Materials Science and Engineering A, 1997, 234-236: 617-620. [11]李红旗, 陈奇志, 王燕斌, 等. 磁场促进位错发射和运动的TEM原位研究[J]. 科学通报, 1997, 42(21): 2282-2284. [12]Molotskii M I. Theoretical basis for electro- and magnetoplasticity[J]. Materials Science and Engineering A, 2000, 287(2): 248-258. [13]刘兆龙, 胡海云, 范天佑. 磁致塑性的位错机理[J]. 北京理工大学学报, 2007, 27(2): 113-115. Liu Zhaolong, Hu Haiyun, Fan Tianyou. Dislocation mechanism of magnetoplasticity[J]. Transactions of Beijing Institute of Technology, 2007, 27(2): 113-115. [14]李沛思. 7055铝合金中的磁致塑性效应研究[D]. 镇江: 江苏大学, 2016. [15]程江峰. 强磁场对2024铝合金组织性能的影响及其机制分析[D]. 镇江: 江苏大学, 2018. [16]Li G R, Xue F, Wang H M, et al. Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress[J]. Chinese Physics B, 2016, 25(10): 262-270. [17]Tang Z J, Du H, Tao K M, et al. Effect of electropulsing on edge stretchability and corrosion resistance near the punched edge of a 2024T4 aluminum alloy sheet[J]. Journal of Materials Processing Technology, 2019, 263: 343-355. [18]Pan D, Wang Y, Guo Q, et al. Grain refinement of Al-Mg-Si alloy without any mechanical deformation and matrix phase transformation via cyclic electro-pulsing treatment[J]. Materials Science and Engineering A, 2021, 807: 140916. [19]Chen K, Zhan L H, Yu W F. Rapidly modifying microstructure and mechanical properties of AA7150 Al alloy processed with electropulsing treatment[J]. Journal of Materials Science and Technology, 2021, 95: 172-179. [20]师亚洲, 逯广平, 高 翌, 等. 脉冲磁场处理对7075铝合金性能及组织的影响[J]. 金属热处理, 2021, 46(9): 159-164. Shi Yazhou, Lu Guangping, Gao Yi, et al. Effect of pulsed magnetic field treatment on properties and microstructure of 7075 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(9): 159-164. [21]Akram S, Babutskyi A, Chrysanthou A, et al. Improvement of the wear resistance of nickel-aluminum bronze and 2014-T6 aluminum alloy by application of alternating magnetic field treatment[J]. Wear, 2021, 480-481: 203940. [22]Akram S, Babutskyi A, Chrysanthou A, et al. Effect of alternating magnetic field on the fatigue behavior of EN8 steel and 2014-T6 aluminum alloy[J]. Metals, 2019, 9(9): 984. [23]高 翌, 杨 屹, 杨 刚, 等. 脉冲次数对电场处理7075铝合金组织和性能的影响[J]. 热加工工艺, 2019, 48(10): 83-86. Gao Yi, Yang Yi, Yang Gang, et al. Effects of pulse times on microstructure and properties of 7075 aluminum alloy treated by electric field[J]. Hot Working Technology, 2019, 48(10): 83-86. [24]Xiao A, Huang C, Cui X, et al. Impact of the pulse induced current on the microstructure and mechanical properties of the 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds, 2022, 911: 165021. [25]Cheng Q, Ye L, Zhong Z, et al. Investigating the impact and mechanisms of electromagnetic treatment on stress corrosion performance in 7075 aluminum alloy[J]. Journal of Materials Science, 2024, 59(4): 1753-1767. [26]Wang Hongming, Li Peisi, Zheng Rui, et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites[J]. Acta Physica Sinica, 2015, 64(8): 087104. [27]Xu J, Huang L, Xu Y, et al. Effect of pulsed electromagnetic field treatment on dislocation evolution and subsequent artificial aging behavior of 2195 Al-Li alloy[J]. Materials Characterization, 2022, 187: 111872. [28]Babutskyi A, Mohin M, Chrysanthou A, et al. Effect of electropulsing on the fatigue resistance of aluminum alloy 2014-T6[J]. Materials Science and Engineering A, 2020, 772: 138679. [29]Lu A L, Tang F, Luo X J, et al. Research on residual-stress reduction by strong pulsed magnetic treatment[J]. Journal of Materials Processing Technology, 1998, 74(1): 259-262. [30]Wu S, Zhao H, Lu A, et al. A micro-mechanism model of residual stress reduction by low frequency alternating magnetic field treatment[J]. Journal of Materials Processing Technology, 2003, 132(1-3): 198-202. [31]Cai Z, Huang X. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current[J]. Materials Science and Engineering A, 2011, 528(19): 6287-6292. [32]李桂荣, 李超群, 韩 松, 等. 磁场处理2024铝合金的塑性和微观机制[J]. 江苏大学学报(自然科学版), 2019, 40(3): 344-349. Li Guirong, Li Chaoqun, Han Song, et al. Plasticity and microstructure of 2024 aluminum alloy treated by magnetic physics fields[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(3): 344-349. [33]Liu W, Otegi N, Orallo A, et al. Post-forming, electro-plastic effect internal stress reduction in AA5754 aluminum alloy[J]. Materials Science and Engineering A, 2022, 852: 143686. [34]Sánchez Egea A J, González Rojas H A, Celentano D J, et al. Electroplasticity-assisted bottom bending process[J]. Journal of Materials Processing Technology, 2014, 214(11): 2261-2267. [35]Lobanov L M, Kondratenko I P, Zhiltsov A V. Development of post-weld electrodynamic treatment using electric current pulses for control of stress-strain states and improvement of life of welded structures[J]. Materials Performance and Characterization, 2018, 7(4): 941-955. [36]Li G, Chen J, Wang H, et al. Influence of static magnetic field on the microstructure and properties of 7055 aluminum alloy[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1036-1045. [37]Sun X, Ji Y, Xiao A, et al. Influence of single-pulse and high-amplitude current on springback and mechanical properties of AA5052 aluminum alloy sheets[J]. Materials Characterization, 2022, 194: 112337. [38]Chen Z, Li B, Huang Q, et al. The effect of the electric pulse treatment on the microstructure and mechanical performance of the Al-Zn alloy[J]. Materials Science and Engineering A, 2020, 796: 140016. [39]Tang Z, Du H, Lang L, et al. Experimental investigation into the electropulsing assisted punching process of 2024T4 aluminum alloy sheet[J]. Journal of Materials Processing Technology, 2018, 253: 86-98. [40]Xiao A, Huang C, Wang S, et al. Effects of induced electro-pulsing and aging process on properties and microstructure of 7075 aluminum alloy[J]. Materials Characterization, 2022, 192: 112222. [41]Wang S, Xiao A, Lin Y, et al. Effect of induced pulse current on mechanical properties and microstructure of rolled 5052 aluminum alloy[J]. Materials Characterization, 2022, 185: 111757. [42]Wang S, Cui X, Xiao A, et al. Mechanical properties and microstructure evolution of pre-stretched aluminum alloy after induced electro-pulsing treatment[J]. Metals and Materials International, 2023, 29(3): 634-644. [43]Sun Q, Wang H, Yu S, et al. Reducing stress corrosion cracking susceptibility of high-strength aluminum alloy and its fastener by a novel electromagnetic shocking treatment[J]. Journal of Alloys and Compounds, 2023, 960: 170917. [44]Wang D, Li N, Han X, et al. Effect of electromagnetic bulging on fatigue behavior of 5052 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1224-1232. [45]Soika A K, Sologub I O, Shepelevich V G, et al. Magnetoplastic effect in metals in strong pulsed magnetic fields[J]. Physics of the Solid State, 2015, 57(10): 1997-1999. [46]Jung J, Ju Y, Morita Y, et al. Enhancement of fatigue life of aluminum alloy affected by the density of pulsed electric current[J]. International Journal of Fatigue, 2017, 103: 419-425. [47]Sun Q, Liu L, Yu S, et al. Gradient phase transformation of Al-Zn-Mg-Cu alloy induced by nonlinear interface wetting under electromagnetic shocking treatment[J]. Journal of Materials Science, 2023, 58(41): 16239-16255. [48]Conrad H. Electroplasticity in metals and ceramics[J]. Materials Science and Engineering A, 2000, 287(2): 276-287.[49]Hu G, Zhu Y, Tang G, et al. Effect of electropulsing on recrystallization and mechanical properties of silicon steel strips[J]. Journal of Materials Science and Technology, 2011, 27(11): 1034-1038. [50]Zhu R, Jiang Y, Guan L, et al. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy[J]. Journal of Alloys and Compounds, 2016, 658: 548-554. [51]Zhou Y Z, You Z, Guanhu H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1): 17-19. [52]Okazaki K, Kagawa M, Conrad H. A study of the electroplastic effect in metals[J]. Scripta Metallurgica, 1978, 12(11): 1063-1068. [53]Tang D W, Zhou B L, Cao H, et al. Thermal stress relaxation behavior in thin films under transient laser-pulse heating[J]. Journal of Applied Physics, 1993, 73(8): 3749-3752. [54]Molotskii M, Fleurov V. Magnetic effects in electroplasticity of metals[J]. Physical Review B, 1995, 52(22): 15829-15834. |