[1]Zhai Y, Zhang H, Wang J, et al. Research progress of metal-based additive manufacturing in medical implants[J]. Reviews on Advanced Materials Science, 2023, 62(1): 20230148. [2]Semlitsch M. Titanium alloys for hip joint replacements[J]. Clinical Materials, 1987, 2(1): 1-13. [3]Yu Z T, Zhang M H, Tian Y X, et al. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Frontiers of Materials Science, 2014, 8: 219-229. [4]Niinomo M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8(11): 3888-3903. [5]Singla A K, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments[J]. Journal of Manufacturing Processes, 2021, 64: 161-187. [6]Publication ETTC 2. Microstructural Standards for Alpha +Beta Titanium Alloy Bars, Prepared by Technical Committee of European Titanium Producers[M]. West Midlands: Titanium Information Group, Edition 2, 1995. [7]Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 220: 202-214. [8]胡志杰, 冯军宁, 马忠贤, 等. 我国钛及钛合金热处理标准现状[J]. 金属热处理, 2021, 46(3): 243-246. Hu Zhijie, Feng Junning, Ma Zhongxian, et al. Current status of heat treatment standards for titanium and titanium alloys[J]. Heat Treatment of Metals, 2021, 46(3): 243-246. [9]Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science Engineering A, 1998, 243: 32-45. [10]Ge J, Guo J, Yu Y, et al. Effect of annealing temperature on the microstructures and impact toughness of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy plates[C]//Journal of Physics: Conference Series, 2023: 012014. [11]Jamhari F I, Foudzi F M, Buhairi M A, et al. Influence of heat treatment parameters on microstructure and mechanical performance of titanium alloy: A brief review[J]. Journal of Materials Research Technology, 2023, 24: 4091-4110. [12]Jiang X, Chen G, Men X, et al. Ultrafine duplex microstructure and excellent mechanical properties of TC4 alloy via a novel thermo-mechanical treatment[J]. Journal of Alloys Compounds, 2018, 767: 617-621. [13]王 哲, 王 非, 曹 恒, 等. 热加工工艺对TC6钛合金棒材组织与性能的影响[J]. 金属热处理, 2023, 48(8): 144-148. Wang Zhe, Wang Fei, Cao Heng, et al. Effect of hot working process on microstructure and properties of TC6 titanium alloy bars[J]. Heat Treatment of Metals, 2023, 48(8): 144-148. [14]Huang S, Ma Y, Zhang S, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical propertiesin α+β titanium alloy[J]. Acta Metallurgica Sinica, 2019, 55(6): 741-750. [15]Wang K, Zhao Y, Jia W, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy[J]. Rare Metal Materials and Engineering, 2021, 50(2): 552-561. [16]蔡小叶, 程宗辉, 董定平, 等. 热处理对L-PBF成形Ti-6Al-4V钛合金显微组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 183-189. Cai Xiaoye, Cheng Zhonghui, Dong Dingping, et al. Effect of heat treatment on microstructure and mechanical properties of Ti-6Al-4V titanium alloy formed by laser power bed fusion[J]. Heat Treatment of Metals, 2024, 49(2): 183-189. [17]侯瑾睿, 张 爽, 张 毅, 等. 模拟烧伤温度对TC4-DT钛合金组织与性能的影响[J]. 金属热处理, 2021, 46(9): 199-204. Hou Jinrui, Zhang Shuang, Zhang Yi, et al. Effect of simulative burn temperature on microstructure and properties of TC4-DT titanium alloy[J]. Heat Treatment of Metals, 2021, 46(9): 199-204. [18]Sieniawski J, Ziaja W, Kubiak K, et al. Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys[M]. London: IntechOpen, 2013: 69-80. [19]Peng X, Guo H, Wang T, et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy[J]. Materials Science Engineering A, 2012, 533: 55-63. [20]Tan C, Sun Q, Zhang G. Role of microstructure in plastic deformation and crack propagation behaviour of an α/β titanium alloy[J]. Vacuum, 2021, 183: 109848. |