[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. [3]Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. [4]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [5]Xu Z Q, Ma Z L, Tan Y, et al. Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility[J]. Scripta Materialia, 2022, 206: 114230. [6]Pang J Y, Zhang H W, Zhang L, et al. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping[J]. Journal of Materials Science and Technology, 2021, 78: 74-80. [7]Wang L, Ding J, Chen S S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys[J]. Nature Materials, 2023, 22(8): 950-957. [8]Liu F, Chen S, Wang B, et al. High specific yield strength TiZrAlNbV high-entropy alloys via coherent nanoprecipitation strengthening[J]. Materials Science and Engineering A, 2022, 861: 144346. [9]Xing Z, Pang J, Ji Y, et al. Optimizing the microstructure and mechanical performance of FeNiCrAl high entropy alloys via Ti addition[J]. Journal of Alloys and Compounds, 2023, 943: 169149. [10]Pei X, Du Y, Li T, et al. A combinatorial evaluation of TiZrV0.5Nb0.5Six refractory high entropy alloys: Microstructure, mechanical properties, wear and oxidation behaviors[J]. Materials Characterization, 2023, 201: 112956. [11]Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550. [12]Pang J Y, Zhang H W, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength[J]. Materials Letters, 2021, 290(6201): 129428. [13]Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design, 2018, 139: 498-511. [14]Xu T, Chen Q, Ji L, et al. BCC/B2 structure and dislocation strengthening behavior in high Ti content TiAlVCrNb high entropy alloys[J]. Journal of Alloys and Compounds, 2023, 956: 170179. [15]Jia Y, Wang G, Wu S, et al. A lightweight refractory complex concentrated alloy with high strength and uniform ductility[J]. Applied Materials Today, 2022, 27: 101429. [16]邵 旭, 庞景宇, 纪 宇, 等. 热加工工艺对Nb37Ti20Al15Zr15Hf5Ta5Mo2W1难熔高熵合金组织与性能影响[J]. 金属热处理, 2023, 48(9): 42-47. Shao Xu, Pang Jingyu, Ji Yu, et al. Effect of hot working process on microstructure and properties of Nb37Ti20Al15Zr15Hf5Ta5Mo2W1 refractory high-entropy alloy[J]. Heat Treatment of Metals, 2023, 48(9): 42-47. [17]Huang R, Wang W, Li T, et al. A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility[J]. Journal of Alloys and Compounds, 2023, 940: 168821. [18]Wang L, Chen S, Li B, et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility[J]. Materials Science and Engineering A, 2021, 814: 141234. [19]Yurchenko N, Panina E, Tojibaev A, et al. Effect of B2 ordering on the tensile mechanical properties of refractory AlxNb40Ti40V20-x medium-entropy alloys[J]. Journal of Alloys and Compounds, 2023, 937: 168465. [20]Guo Y, He J, Li Z, et al. Solidification segregation-driven microstructural evolution of trace yttrium-alloyed TaMoNbZrTiAl refractory high entropy alloys[J]. Materials Characterization, 2022, 194: 112495. [21]韩林至, 牟 娟, 周永康, 等. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168. Han Linzhi, Mu Juan, Zhou Yongkang, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Ti0.5Zr1.5NbTa0.5Sn0.2 high-entropy alloy[J]. Acta Metallurgica Sinica, 2022, 58(9): 1159-1168. [22]王瀚铭, 杜 银, 裴旭辉, 等. 共晶组织强化NbMoZrVSix难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946. Wang Hanming, Du Yin, Pei Xuhui, et al. Tribological property and wear mechanism of NbMoZrVSix refractory high-entropy alloy strengthened by eutectic structure[J]. Acta Metallurgica Sinica, 2024, 60(7): 937-946. [23]曹育菡, 王理林, 吴庆峰, 等. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339. Cao Yuhan, Wang Lilin, Wu Qingfeng, et al. Partially recrystallized structure and mechanical properties of CoCrFeNiMo0.2 high-entropy alloy[J]. Acta Metallurgica Sinica, 2020, 56(3): 333-339. |