[1]詹苏宇, 盛光敏, 刘旭东, 等. 高强HRB400E建筑用抗震钢筋高应变低周疲劳性能研究[J]. 热加工工艺, 2010, 39(16): 22-26. Zhan Suyu, Sheng Guangmin, Liu Xudong, et al. Study on high strain and low cycle fatigue properties of seismic steel bars for high-strength HRB400E construction[J]. Hot Working Technology, 2010, 39(16): 22-26. [2]盛光敏, 吕煜坤, 黄振华. 细晶化和余热处理抗震钢筋的高应变低周疲劳行为分析[J]. 功能材料, 2014, 45(15): 15124-15128. Sheng Guangmin, Lü Yukun, Huang Zhenhua. Analysis on the high strain and low cycle fatigue behaviors of seismic rebar between the grain refinement and tempcore technology[J]. Journal of Functional Materials, 2014, 45(15): 15124-15128. [3]谢雄科. 热轧带肋螺纹钢筋HRB500E奥氏体晶粒长大行为[J]. 河北冶金, 2022, 10(12): 9-13. Xie Xiongke. Austenite grain growth behavior of hot-rolled ribbed bar HRB500E[J]. Hebei Metallurgy, 2022, 10(12): 9-13. [4]韩汝洋, 杨庚蔚, 孙新军, 等. 钒微合金化中锰马氏体耐磨钢奥氏体长大行为[J]. 金属学报, 2015, 58(12): 1589-1599. Han Ruyang, Yang Gengwei, Sun Xinjun, et al. Austenite grain growth behavior of vanadium microalloying medium manganese martensitic wear-resistant steel[J]. Acta Metallurgica Sinica, 2015, 58(12): 1589-1599. [5]]Dong Dingqian, Chen Fei, Cui Zhenshan. Modeling of austenite grain growth during austenitization in a low alloy steel[J]. Journal of Materials Engineering and Performance, 2016, 25(1): 152-164. [6]]罗 许, 康永林, 李俊洪. 加热温度对钛微合金化钢奥氏体晶粒长大的影响[J]. 钢铁钒钛, 2016, 37(2): 133-138. Luo Xu, Kang Yonglin, Li Junhong. Effect of heating temperature on the growth of austenite grain of titanium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2016, 37(2): 133-138. [7]]Kim T H, Park J K. Austenite grain coarsening of V-microalloyed medium carbon steel during high frequency induction heating: Monte Carlo simulation study[J]. Materials Science Technology, 2013, 29(12): 1414-1422. [8]]李 奇, 张 旭, 李晓晴, 等. Nb、Ti对耐热钢中δ铁素体固溶行为的影响[J]. 钢铁, 2023, 58(10): 131-139. Li Qi, Zhang Xu, Li Xiaoqing, et al. Effect of Nb and Ti on dissolution behavior of delta ferrite in heat-resistant steel[J]. Iron and Steel, 2023, 58(10): 131-139. [9]]苑少强, 梁国俐, 武会宾. 超低碳微合金钢中碳氮化物的溶解行为[J]. 材料热处理学报, 2011, 32(S1): 83-85. Yuan Shaoqiang, Liang Guoli, Wu Huibin, Dissolving behavior of carbonitrides in a ultra-low carbon microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(S1): 83-85. [10]杨 清, 张立文, 张 驰, 等. 低碳Nb-V-Ti微合金钢X70的奥氏体晶粒长大行为[J]. 金属热处理, 2019, 44(4): 1-5. Yang Qing, Zhang Liwen, Zhang Chi, et al. Austenite grain growth behavior of low-carbon Nb-V-Ti microalloyed steel X70[J]. Heat Treatment of Metals, 2019, 44(4): 1-5. [11]]高彩茹, 霍喜伟, 宋玉卿, 等. 500 MPa级门架型钢的奥氏体晶粒长大行为[J]. 金属热处理, 2020, 45(1): 139-142. Gao Cairu, Huo Xiwei, Song Yuqing, et al. Austenite grain growth behavior of 500 MPa class gantry steel[J]. Heat Treatment of Metals, 2020, 45(1): 139-142. [12]]刘 豪, 张立文, 李 飞, 等. 38CrMoAl钢的奥氏体晶粒长大行为[J]. 金属热处理, 2020, 45(8): 38-42. Liu Hao, Zhang Liwen, Li Fei, et al. Austenite grain growth behavior of 38CrMoAl steel[J]. Heat Treatment of Metals, 2020, 45(8): 38-42. [13]]Najafkhani F, Mirzadeh H, Zamani M. Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel[J]. Metals and Materials International, 2019, 25: 39-46. |