[1]谢敬佩. 我国铸钢技术发展现状及趋势[J]. 铸造, 2022, 71(4): 395-402. Xie Jingpei. Development status and trend of steel casting technology in China[J]. Cast, 2022, 71(4): 395-402. [2]杨志勇, 刘振宝, 梁剑雄, 等. 马氏体时效不锈钢的发展[J]. 材料热处理学报, 2008(4): 1-7. Yang Zhiyong, Liu Zhenbao, Liang Jianxiong, et al. Development of maraging stainless steel[J]. Transactions of Materials and Heat Treatment, 2008(4): 1-7. [3]]Li Jihang, Zhan Dongping, Jiang Zhouhua, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review[J]. Journal of Materials Research and Technology, 2023, 23: 172-190. [4]]Niu Mengchao, Yang Ke, Luan Junhua, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. Journal of Materials Science & Technology, 2022, 104(9): 52-58. [5]王 滨, 牛梦超, 王 威, 等. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646. Wang Bin, Niu Mengchao, Wang Wei, et al. Microstructure and strength-toughness of a Cu-contained maraging stainless steel[J]. Acta Metallurgica Sinica, 2023, 59(5): 636-646. [6]王龙妹. 稀土元素在新一代高强韧钢中的作用和应用前景[J]. 中国稀土学报, 2004(1): 48-54. Wang Longmei. Application prospects and behavior of RE in new generation high strength steels with superior toughness[J]. Journal of the Chinese Rare Earth Society, 2004(1): 48-54. [7]刘 晓, 马利飞, 李运刚. 镧和铈对Cr13型不锈钢耐腐蚀性能的影响[J]. 热加工工艺, 2016, 45(6): 119-121. Liu Xiao, Ma Lifei, Li Yungang. Effects of La and Ce on corrosion resistance of Cr13 stainless steel[J]. Hot Working Technology, 2016, 45(6): 119-121. [8]孟 泽, 李光强, 赵一将, 等. La-Ce处理对75Cr1钢夹杂物和耐蚀性影响的工业试验[J]. 钢铁, 2023, 58(6): 110-117. Meng Ze, Li Guangqiang, Zhao Yijiang, et al. Industrial experimental on inclusion characteristics and corrosion resistance of La-Ce treated 75Cr1 steel[J]. Iron and Steel, 2023, 58(6): 110-117. [9]]Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel[J]. Journal of Materials Science and Technology, 2021, 93(34): 232-243. [10]]Kong H, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions[J]. Scripta Materialia, 2020, 186: 213-218. [11]]马才女, 高雪云, 呼陟宇, 等. 轧制变形对F-M双相钢0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu晶粒细化的影响[J]. 特殊钢, 2022, 43(3): 91-94. Ma Cainü, Gao Xueyun, Hu Zhiyu, et al. Effect of rolling deformation on grain refinement of F-M dual phase steel 0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu[J]. Special Steel, 2022, 43(3): 91-94. [12]]Kwon E P, Fujieda S, Shinoda K, et al. Characterization of transformed and deformed microstructures in transformation induced plasticity steels using electron backscattering diffraction[J]. Materials Science and Engineering A, 2011, 528(15): 5007-5017. [13]]Syamak H N, Mehmet Y, Abdollah S. Solidification behaviour of austenitic stainless steels during welding and directed energy deposition[J]. Science and Technology of Welding and Joining, 2023, 28(1): 1-17. [14]]Kostina M V, Krivorotov V I, Kostina V S, et al. The features of the chemical composition and structural-phase state determining a decrease in the corrosion resistance of 18Cr-10Ni steel parts[J]. Steel in Translation, 2021, 51(3): 168-179. [15]]Guiraldenq P, Duparc H O. The genesis of the Schaeffler diagram in the history of stainless steel[J]. Metallurgical Research and Technology, 2017, 114(6): 613-622. [16]]Wang Xiaoqiang, Wu Zhiwei, Li Bing, et al. Inclusions modification by rare earth in steel and the resulting properties: A review[J]. Journal of Rare Earths, 2023(23): 1-44. [17]]Yang Zhiqin, Bao Jianxing, Ding Chaogang, et al. Electroplasticity in the Al0. 6CoCrFeNiMn high entropy alloy subjected to electrically-assisted uniaxial tension[J]. Journal of Materials Science and Technology, 2023, 148: 209-221. [18]]Hutchinson C R, Gouné M, Redjaïmia A. Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process-property optimization[J]. Acta Materialia, 2007, 55(1): 213-223. |