[1]]王志隆. 含氮奥氏体不锈钢的耐腐蚀性及力学性能研究[D]. 镇江: 江苏大学, 2022. Wang Zhilong. Study on corrosion resistance and mechanical properties of nitrogen-containing austenitic stainless steel[D]. Zhenjiang: Jiangsu University, 2022. [2]]Zhang Yingnan. Analysis of sustainable development capacity of ecosystem in Tangshan based on entropy method[C]// 2019 6th Asia-Pacific Conference on Social Sciences, Humanities (APSSH 2019). 2019: 206-212. [3]]侯世璞. 1Mn18Cr18N护环钢的疲劳性能及动态断裂韧性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Hou Shipu. Study on fatigue properties and dynamic fracture toughness of 1Mn18Cr18N retaining ring steel[D]. Harbin: Harbin Polytechnic Institute, 2018. [4]]范恩点. Nb微合金化E690钢焊接热影响区在模拟海水中的应力腐蚀机理研究[D]. 北京: 北京科技大学, 2023. Fan Endian. The stress corrosion mechanism of Nb microalloyed E690 steel welding heat affected zone in simulated seawater was studied[D]. Beijing: University of Science and Technology Beijing, 2023. [5]]张荣华, 杨 川, 石 宁, 等. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162. Zhang Ronghua, Yang Chuan, Shi Ning, et al. Research progress in plastic deformation characteristics of high nitrogen austenitic steel[J]. Materials Reports, 2021, 35(11): 11154-11162. [6]]Sharifi M, Arab N, Khalaj G. Prediction of toughness through evaluation of alloying elements distribution pattern at heat-affected zone in submerged-arc welding process of API X70 steel[C]// 2013 International Conference on Materials Science and Mechanical Engineering (ICMSME 2013). 2013: 47-52. [7]]廖露海. 超级奥氏体不锈钢S32654组织与性能研究[D]. 北京: 北京科技大学, 2023. Liao Luhai. Study on microstructure and properties of super austenitic stainless steel S32654[D]. Beijing: University of Science and Technology Beijing, 2023. [8]]姜保瑞. 时效工艺对7N01合金组织和腐蚀性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2019. Jiang Baorui. Effect of aging process on microstructure andcorrosion properties of 7N01 alloy[D]. Harbin: Harbin Polytechnic Institute, 2019. [9]]Minaev Y A. Phenomena of intergranular liquid film formation in technology[C]//2015 Workshop 1. 2015: 171-177. [10]]刘 阳. 含铬铌微合金钢铸坯表面裂纹产生机理研究[D]. 北京: 北京科技大学, 2021. Liu Yang. Study on surface crack generation mechanism of chromium-niobium microalloyed steel slab[D]. Beijing: University of Science and Technology Beijing, 2021. [11]]张 月. 超级奥氏体不锈钢凝固组织演变及偏析规律[D]. 北京: 北京科技大学, 2023. Zhang Yue. Solidification microstructure evolution and segregation law of super austenitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023. [12]]王 辉. 奥氏体低密度钢组织调控与强韧化机理研究[D]. 重庆: 重庆大学, 2022. Wang Hui. Study on microstructure regulation andstrengthening-toughening mechanism of austenitic low density steel[D]. Chongqing: Chongqing University, 2022. [13]]曹 荣. 氮含量对18Cr18Mn不锈钢凝固相变过程的影响[D]. 昆明: 昆明理工大学, 2019. Cao Rong. Effect of nitrogen content on solidification phase transformation of 18Cr18Mn stainless steel[D]. Kunming: Kunming University of Science and Technology, 2019. [14]]钱 炯. 奥氏体不锈钢晶间贫Cr富C区对其晶间腐蚀行为的影响机制研究[D]. 北京: 中国石油大学(北京), 2017. Qian Tong. Study on the influence mechanism of intergranular Cr-depleted and C-rich zone on intergranular corrosion behavior of austenitic stainless steel[D]. Beijing: China University of Petroleum(Beijing), 2017. [15]]杨 勇. 高效低成本钒氮合金制备关键工艺技术研究[D]. 北京: 钢铁研究总院, 2018. Yang Yong. Study on the key technology of high efficiency and low cost preparation of vanadium nitrogen alloy[D]. Beijing: General Institute of Iron and Steel Research, 2018. [16]]王晓东. 钒氮强化新型低合金耐磨铸钢的组织与性能研究[D]. 北京: 机械科学研究总院, 2022. Wang Xiaodong. Study on microstructure and properties of new low alloy wear-resistant cast steel strengthened by vanadium and nitrogen[D]. Beijing: General Institute of Mechanical Science Research, 2022. |