[1]Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants—steamside oxidation[J]. Journal of Materials Engineering and Performance, 2006, 15(3): 255-274. [2]杨 鑫, 王安林, 徐佰明, 等. 600 ℃及以上等级高参数汽轮机组主要部件选材及应用[J]. 汽轮机技术, 2024, 66(1): 76-78. Yang Xin, Wang Anlin, Xu Baiming, et al. Material selection and application of main components of 600 ℃ and above ultra supercritical steam turbine[J]. Turbine Technology, 2024, 66(1): 76-78. [3]吕俊复, 蒋 苓, 柯希玮, 等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术, 2023, 51(1): 514-522. Lü Junfu, Jiang Ling, Ke Xiwei, et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology, 2023, 51(1): 514-522. [4]彭建强, 刘新新, 吕振家. 高参数汽轮机螺栓用高温合金材料研究[J]. 东方汽轮机, 2023(1): 38-42. Peng Jianqiang, Liu Xinxin, Lü Zhenjia. Study of superlloy for bolts of steam turbine with high parameter[J]. Dongfang Turbine, 2023(1): 38-42. [5]刘高军. 碳达峰碳中和背景下火力发电厂碳排放分析与建议[J]. 洁净煤技术, 2023, 29(6): 189-195. Liu Gaojun. Analysis and suggestion of carbon emission in thermal power plants under the background of carbon peak and carbon neutrality[J]. Clean Coal Technology, 2023, 29(6): 189-195. [6]黄友桥, 李 望, 朱新平, 等. Inconel783高温合金螺栓的组织与织构[J]. 金属热处理, 2022, 47(9): 214-219. Huang Youqiao, Li Wang, Zhu Xinping, et al. Microstructure and texture of Inconel 783 superalloy bolt[J]. Heat Treatment of Metals, 2022, 47(9): 214-219. [7]张 涛, 郝丽婷, 田 峰, 等. 700 ℃超超临界火电机组用高温材料研究进展[J]. 机械工程材料, 2016, 40(2): 1-6. Zhang Tao, Hao Liting, Tian Feng, et al. Research progress on high temperature materials for 700 ℃ ultra-supercritical coal-fired unit[J]. Materials for Mechanical Engineering, 2016, 40(2): 1-6. [8]Veeresham M, Sake N, Lee U, et al. Unraveling phase prediction in high entropy alloys: A synergy of machine learning, deep learning, and Thermo-Calc, validation by experimental analysis[J]. Journal of Materials Research and Technology, 2024, 29: 1744-1755. [9]Kang S H, Deguchi Y, Yamamoto K, et al. Solidification process and behavior of alloying elements in Ni-based superalloy Inconel718[J]. Materials Transactions, 2004, 45(8): 2728-2733. [10]Mills K C, Youssef Y M, Li Z, et al. Calculation of thermophysical properties of Ni-based superalloys[J]. ISIJ International, 2006, 46(5): 623-632. [11]李生志, 付立铭, 单爱党. 扩散退火对Inconel 783合金显微组织及力学性能的影响[J]. 机械工程材料, 2016, 40(8): 7-11, 89. Li Shengzhi, Fu Liming, Shan Aidang. Effects of diffusion annealing on microstructure and mechanical properties of Inconel alloy 783[J]. Materials for Mechanical Engineering, 2016, 40(8): 7-11, 89. [12]Ma L, Chang K M. Effects of different metallurgical processing on microstructures and mechanical properties of inconel alloy 783[J]. Journal of Materials Engineering and Performance, 2004, 13(1): 32-38. [13]Han G W, Feng D, Deng B, et al. Investigation on the precipitation of β phase and its effect on stress rupture properties of In783 alloy[J]. Journal of Aeronautical Materials, 2003, 10(1): 298-303. [14]Ma L, Chang K M, Mannan S K. Oxide-induced crack closure: An explanation for abnormal time-dependent fatigue crack propagation behavior in Inconel alloy 783[J]. Scripta Materialia, 2003, 48(5): 583-588. [15]王庆峰. 超超临界机组In783合金螺栓早期断裂原因及其应用建议[J]. 理化检验-物理分册, 2023, 59(12): 69-73. Wang Qingfeng. Thecauses of fractures of In783 allay bolt in ultra-supercritical unit and its application suggestions[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2023, 59(12): 69-73. [16]贾若飞, 李 梁, 秦承鹏. 某1000MW超超临界机组汽轮机IN783螺栓断裂失效分析[J]. 汽轮机技术, 2019, 61(1): 78-80, 12. Jia Ruofei, Li Liang, Qin Chengpeng. Failure analysis of IN783 alloy bolt used on 1000MW ultra supercritical steam turbine[J]. Turbine Technology, 2019, 61(1): 78-80, 12. [17]沈 治, 沈红卫, 孙 锋, 等. IN783合金热处理工艺的热动力学评估及成分设计[J]. 动力工程学报, 2010, 30(4): 287-292. Shen Zhi, Shen Hongwei, Sun Feng, et al. Thermodynamic and kinetic study on heat treatment and composition design of alloy IN783[J]. Journal of Chinese Society of Power Engineering, 2010, 30(4): 287-292. [18]Ma L Z, Wang Y C, Ringnalda J, et al. Comparison of different sample preparation techniques in TEM observation of microstructure of Inconel alloy 783 subjected to prolonged isothermal exposure[J]. Microscopy and Microanalysis, 2003, 9(S02): 798-799. [19]Kang B, Liu X, Cisloiu C, et al. High temperature moiré interferometry investigation of creep crack growth of inconel 783-environment and β-phase effects[J]. Materials Science and Engineering A, 2003, 347(1): 205-213. [20]Yu L X, Sun X F, Sun W R, et al. Precipitation behaviour of β and γ′ in high Al low thermal expansion superalloy[J]. Materials Science and Technology, 2011, 27(1): 421-425. [21]Krishna R, Hainsworth S, Atkinson H, et al. Microstructural analysis of creep exposed IN617 alloy[J]. Materials Science and Technology, 2010, 26(1): 797-802. [22]Doi M, Miyazaki T, Wakatsuki T. The effect of elastic interaction energy on the morphology of γ′ precipitates in nickel-based alloys[J]. Materials Science and Engineering, 1984, 67(2): 247-253. [23]Han G W, Zhang Y Y. Variations in microstructure and properties of GH783 alloy after long term thermal exposure[J]. Materials Science and Engineering A, 2006, 441(1/2): 253-258. [24]Zhao Q, Wang J, Liu J, et al. Life extension heat treatment of IN783 bolts[J]. Materials Testing, 2020, 62(1): 49-54. [25]Dana J F, Gregory B O, et al. Design of Heusler precipitation strengthened NiTi- and PdTi-base SMAs for cyclic performance[J]. Shape Memory and Superelasticity, 2015, 1(2): 162-179. [26]Li H T, Guo J T, Ye H Q. Composition dependence of the precipitation behavior in NiAl-Cr(Mo)-(Ti, Hf) near eutectic alloys[J]. Materials Science and Engineering A, 2013, 452-453: 763-772. [27]Nembach E, Trinckauf K. Compositional gradients at the phase-boundary between the γ′-precipitates and the γ-matrix in the γ′-hardened nickel-base superalloy nimonic 105[J]. Materials Science Forum, 1993, 126-128: 635-638. [28]Sijbrandij S J, Miller M K, Horton J A, et al. Atom probe analysis of nickel-based superalloy IN-718 with boron and phosphorus additions[J]. Materials Science and Engineering A, 1998, 250(1): 115-119. |