[1]Kang J H, Park I W, Jae J S, et al. A study on die wear model of warm and hot forgings[J]. Metals and Materials, 1998, 4(3): 477-483. [2]Ebara R. Fatigue crack initiation and propagation behavior of forging die steels[J]. International Journal of Fatigue, 2010, 32(5): 830-840. [3]白嘉远. 铝合金材料的应用及其加工成形技术[J]. 世界有色金属, 2017(14): 272-273. Bai Jiayuan. Application of aluminum alloy material and its forming technology[J]. World Nonferrous Metals, 2017(14): 272-273. [4]王春涛, 姚 杰. 压铸铝合金的研究进展[J]. 模具工业, 2019, 45(8): 1-5. Wang Chuntao, Yao Jie. Research progress of die casting aluminum alloy[J]. Mould Industry, 2019, 45(8): 1-5. [5]岛村祐太, 舘幸生, 中間一夫, 等. 合金元素对热作模具钢高温强度的影响及新型压铸模用钢的研制[J]. 于 红, 译. 模具制造, 2021, 21(12): 84-89. [6]宋雯雯, 闵永安, 吴晓春. 热作模具钢SDH8与H13的强韧性对比研究[J]. 金属热处理, 2008, 33(9): 59-61. Song Wenwen, Min Yongan, Wu Xiaochun. Comparative studies on strength and toughness of SDH8 and H13 hot work steel[J]. Heat Treatment of Metals, 2008, 33(9): 59-61. [7]赵成志, 金天文, 符策鹄, 等. 预处理工艺对热作模具钢5Cr8MoNi2SiV组织与硬度的影响[J]. 金属热处理, 2016, 41(1): 29-34. Zhao Chengzhi, Jin Tianwen, Fu Cehu, et al. Influence of pretreatment process on microstructure and hardness of hot-work die steel 5Cr8MoNi2SiV[J]. Heat Treatment of Metals, 2016, 41(1): 29-34. [8]吴远辉, 左鹏鹏, 白植雄, 等. 淬回火工艺对压铸模具钢4Cr5Mo2V强韧性及组织影响[J]. 模具制造, 2017, 17(6): 93-97. Wu Yuanhui, Zuo Pengpeng, Bai Zhixiong, et al. Effect of quenching and tempering process on strength, toughness and microstructure of die-casting die steel 4Cr5Mo2V[J]. Die and Mould Manufacture, 2017, 17(6): 93-97. [9]张学友, 左鹏鹏, 何西娟, 等. 氮含量对热作模具钢4Cr5Mo2V热疲劳性能的影响[J]. 金属热处理, 2017, 42(1): 9-14. Zhang Xueyou, Zuo Pengpeng, He Xijuan, et al. Effect of nitrogen content on thermal fatigue property of hot work die steel 4Cr5Mo2V[J]. Heat Treatment of Metals, 2017, 42(1): 9-14. [10]林 鹏, 马党参, 胡连新, 等. 压铸用模具钢4Cr5Mo2V的过冷奥氏体连续冷却转变[J]. 金属热处理, 2018, 43(6): 16-20. Lin Peng, Ma Dangshen, Hu Lianxin, et al. Continuous cooling transformation of super-cooled austenite of die steel 4Cr5Mo2V for die-casting[J]. Heat Treatment of Metals, 2018, 43(6): 16-20. [11]李红英, 王法云, 曾翠婷, 等. 3Cr2Mo钢CCT曲线的测定与分析[J]. 中南大学学报, 2011, 42(7): 1928-1933. Li Hongying, Wang Fayun, Zeng Cuiting, et al. Determination and analysis of CCT curves of 3Cr2Mo steel[J]. Journal of Central South University, 2011, 42(7): 1928-1933. [12]张进峰. 中低碳钢碳扩散行为的电阻和内耗方法研究[D]. 上海: 上海大学, 2021. Zhang Jingfeng. Study on carbon diffusion behaviors of medium and low carbon steels by resistance and internal friction methods[D]. Shanghai: Shanghai University, 2021. [13]Park B J, Choi J M, Lee K J. Analysis of phase transformations during continuous cooling by the first derivative of dilatation in low carbon steels[J]. Materials Characterization, 2012, 64: 8-14. [14]邹仲平, 路 峰, 于 浩, 等. 50Mn2V 钢连铸坯CCT曲线测定及热塑性分析研究[J]. 热加工工艺, 2019, 48(2): 76-80, 86. Zou Zhongping, Lu Feng, Yu Hao, et al. Research on determination of CCT curve and thermoplastic analysis of 50Mn2V steel continuous casting billet[J]. Hot Working Technology, 2019, 48(2): 76-80, 86. [15]曹瑞芳, 王福明, 李长荣, 等. Mo对R5系泊链钢过冷奥氏体连续冷却转变曲线[J]. 金属热处理, 2010, 35(5): 6-10. Cao Ruifang, Wang Fuming, Li Changrong, et al. Effect of Mo on austenite continuous cooling transformation curves of R5 off shore mooring chain steel[J]. Heat Treatment of Metals, 2010, 35(5): 6-10. [16]Krielaart G P, Zwaag S V. Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J]. Materials Science and Engineering A, 1998, 246(1/2): 104-116. [17]Donachie S J, Ansell G S. The effect of quench rate on the properties and morphology of ferrous martensite[J]. Metallurgical Transactions A, 1975, 6(10): 1863-1875. |