[1]Lü Zhidan, Zhang Changjiang, Du Zhaoxin, et al. Relationship between microstructure and tensile properties on a near-β titanium alloy after multidirectional forging and heat treatment[J]. Rare Metals, 2019, 38(4): 336-342. [2]顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55. Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Laser, 2020, 47(5): 32-55. [3]杨 光, 邵 帅, 王 超, 等. 固溶温度对激光沉积制造Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V钛合金组织及力学行为的影响[J]. 稀有金属, 2021, 45(3): 264-271. Yang Guang, Shao Shuai, Wang Chao, et al. Microstructure and mechanical behavior of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated by laser deposition with change of solution temperature[J]. Chinese Journal of Rare Metals, 2021, 45(3): 264-271. [4]汪豪杰, 杨 芳, 郭志猛, 等. 3D打印钛及钛合金的发展现状及挑战[J]. 稀有金属材料与工程, 2021, 50(2): 709-716. Wang Haojie, Yang Fang, Guo Zhimeng, et al. Progress and challenge of 3D printing titanium and titanium alloys[J]. Rare Metal Materials and Engineering, 2021, 50(2): 709-716. [5]赵永庆, 葛 鹏, 辛社伟. 近5年钛合金材料研发进展[J]. 中国材料进展, 2020, 39(S1): 527-534, 557-558. Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(S1): 527-534, 557-558. [6]赵永庆, 马朝利, 常 辉, 等. 1200 MPa级新型高强韧钛合金[J]. 中国材料进展, 2016, 35(12): 914-918. Zhao Yongqing, Ma Zhaoli, Chang Hui, et al. New high strength and high toughness titanium alloy with 1200 MPa[J]. Materials China, 2016, 35(12): 914-918. [7]Sharma D, Sitarama R K, Fabijanic D, et al. The ageing response of direct laser deposited metastable β-Ti alloy, Ti-5Al-5Mo-5V-3Cr[J]. Addictive Manufacturing, 2021, 48: 102384. [8]赵英杰, 辛社伟, 周 伟, 等. 高温形变热处理Ti5321合金组织和拉伸性能的影响[J]. 材料热处理学报, 2018, 39(4): 37-43. Zhao Yingjie, Xin Shewei, Zhou Wei, et al. Influence of high temperature thermo-mechanical treatment on structure and tensile properties of Ti5321 alloy[J]. Transactions of Materials and Heat Treatment, 2018, 39(4): 37-43. [9]Liu Changmeng, Yu Lu, Zhang Ali, et al. Beta heat treatment of laser melting deposited high strength near β titanium alloy[J]. Materials Science and Engineering A, 2016, 673: 185-192. [10]周 伟, 赵永庆, 辛社伟, 等. Ti-5321钛合金BASCA处理不同冷却速度下的片层形态和性能研究(英文)[J]. 稀有金属材料与工程, 2020, 49(7): 2314-2318. Zhou Wei, Zhao Yongqing, Xin Shewei, et al. Lamellar features and mechanical properties of Ti5321 alloy at different cooling rates of BASCA treatment[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2314-2318. [11]杨 光, 宋海浩, 钦兰云, 等. 钛合金激光沉积热行为及组织演变[J]. 稀有金属材料与工程, 2016, 45(10): 2598-2604. Yang Guang, Song Haihao, Qin Lanyun, et al. Thermal behavior and microstructure evolution of titanium alloy by laser deposition[J]. Rare Metal Materials and Engineering, 2016, 45(10): 2598-2604. [12]窦恩惠, 肖美立, 柯林达, 等. 热处理对激光选区熔化成形TC11钛合金组织性能的影响[J]. 中国激光, 2021, 48(6): 207-215. Dou Enhui, Xiao Meili, Ke Linda, et al. Effect of heat treatment on microstructure and mechanical properties of selective-laser-melted TC11 titanium alloys[J]. Chinese Journal of Laser, 2021, 48(6): 207-215. [13]尤中原, 刘文言, 陈 荣, 等. α相含量对新型亚稳β钛合金动态力学性能的影响[J]. 中国激光, 2021, 45(7): 891-896. You Zhongyuan, Liu Wenyan, Chen Rong, et al. Dynamic mechanical properties of new type of metastable titanium alloy with different α phase content[J]. Chinese Journal of Laser, 2021, 45(7): 891-896. [14]Wu Chuan, Zhan Mei. Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(5): 997-1006. [15]梁彦鹏. 激光增材制造高温高强钛合金组织性能调控研究[D]. 大连: 大连理工大学, 2023: 66. Liang Yanpeng. Study on microstructure and properties of high temperature and high strength titanium alloy fabricated by laser additive manufacturing[D]. Dalian: Dalian University of Technology, 2023: 66. [16]Pang Xiaotong, Xiong Zhihui, Yao Chengwu, et al. Strength and ductility optimization of laser additive manufactured metastable β titanium alloy by tuning α phase by post heat treatment[J]. Materials Science and Engineering A, 2022, 831(13): 142265. [17]张启飞, 杨 帅, 刘书君, 等. 时效处理对Ti55531钛合金微观组织演变规律及力学性能影响[J]. 稀有金属材料与工程, 2022, 51(7): 2645-2653. Zhang Qifei, Yang Shuai, Liu Shujun, et al. Effect of aging treatment on microstructure evolution and mechanical properties of Ti55531 titanium alloy[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2645-2653. [18]卢金文. 钛合金中Mo元素的强化机理及组织演变[D]. 沈阳: 东北大学, 2016: 150. Lu Jinwen. Strengthening mechanism of Mo and microstructural evolution in titanium alloys[D]. Shenyang: Northeastern University, 2016: 150. [19]Liu Changmeng, Lu Ying, Tian Xiangjun, et al. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys[J]. Metal Science and Engineer A, 2016, 661(20): 145-151. [20]肖树龙, 陈兆琦, 荆 科, 等. 热处理对亚稳β钛合金显微组织与性能的影响[J]. 中国有色金属学报, 2022, 32(6): 1655-1664. Xiao Shulong, Chen Zhaoqi, Jing Ke, et al. Effect of heat treatment on microstructure and properties of metastable β titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6): 1655-1664. [21]李海涛, 陈冬梅, 官海婷, 等. Ti62A钛合金固溶过程中初生α相的球化机理[J]. 金属热处理, 2024, 49(3): 168-173. Li Haitao, Chen Dongmei, Guan Haiting, et al. Spheroidization mechanism of primary α-phase in solution treatment process of Ti62A titanium alloy[J]. Heat Treatment of Metals, 2024, 49(3): 168-173. [22]岳 旭, 张明玉, 杨嘉珞, 等. 热处理工艺对亚稳定β型钛合金组织与拉伸性能的影响[J]. 金属热处理, 2023, 48(7): 187-192. Yue Xu, Zhang Mingyu, Yang Jialuo, et al. Effect of heat treatment process on microstructure and tensile properties of metastable β-type titanium alloy[J]. Heat Treatment of Metals, 2023, 48(7): 187-192. |