[1]Song Y T, Li J G, Wan Y X, et al. Engineering design of the CFETR machine[J]. Fusion Engineering Design, 2022, 183: 113247. [2]高 翔, 万宝年, 宋云涛, 等. CFETR物理与工程研究进展[J]. 中国科学: 物理学 力学 天文学, 2019, 49(4): 3-10. Gao Xiang, Wan Baonian, Song Yuntao, et al. Progress on CFETR physics and engineering[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019(4): 3-10. [3]Wang W J, Zhao C Y, Jin J, et al. The research on high-strength CICC jackets with YS>1500 MPa at 4.2 K for future fusion applications[J]. Nuclear Materials and Energy, 2023, 36: 101474. [4]Qin J G, Dai C, Liao G J, et al. Tensile test of SS 316LN jacket with different conditions[J]. Cryogenics, 2014, 64: 16-20. [5]Jin H, Wu Y, Qin J G, et al. Microstructure and mechanical properties of high manganese steel processed by cold working and aging at 4.2 K[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 2800709. [6]Kass J N, Bell W L, Wang M T, et al. Influence of recrystallization behavior on the mechanical properties of XM-19 stainless steel (22Cr-13Ni-5Mn-2Mo-0.3N)[J]. Metallurgical Transactions A, 1979, 10: 715-725. [7]Mcrae D M, Walsh R P, Dalder E N C, et al. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K[J]. Advances in Cryogenic Engineering, 2014, 60(1): 59-66. [8]Hartwig Z S, Vieira R F, Dunn D, et al. The SPARC Toroidal field model coil program[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(2): 1-16. [9]Zhai R Z, Zhang H L, Liu S, et al. Influence of carbon content on the microstructure and cryogenic tensile properties of N50 austenitic stainless steel after aging treatment[J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2022, 571: 154023. [10]Wang W J, Zhao C Y, Jin J, et al. Mechanical properties evaluation of ReBCO CICC jacket based on super-austenitic stainless steel for CFETR high-field magnet[J]. Nuclear Materials and Energy, 2023, 34: 101344. [11]ASTM E1450-16, Standard Test Method for Tension Testing of Structural Alloys in Liquid Helium[S]. |