[1]娄凤蒂. 船舶制造用球扁钢[J]. 鞍钢技术, 1985(9): 64. [2]林方敏, 邢 梅, 唐立志, 等. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 158-165. Lin Fangmin, Xing Mei, Tang Lizhi, et al. Research progress of Fe-Mn-Al-C low-density steels and their strengthening mechanisms[J]. Materials Reports, 2023, 37(5): 158-165. [3]李晓刚. 材料腐蚀与防护概论[M]. 北京: 机械工业出版社, 2017. Li Xiaogang. Introduction to Corrosion and Protection of Materials[M]. Beijing: Mechanical Industry Press, 2017. [4]叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展[C]//第十届中国钢铁年会论文集. 上海: 中国金属学会, 2015: 1503. [5]马 涛, 李佳祺, 徐鹏飞, 等. Nb对Fe-Mn-Al-C低密度钢显微组织及耐蚀性的影响[J]. 中国冶金, 2024, 34(4): 127-137. Ma Tao, Li Jiaqi, Xu Pengfei, et al. Effect of Nb on microstructure and corrosion resistance of Fe-Mn-Al-C low density steel[J]. China Metallurgy, 2024, 34(4): 127-137. [6]薛东妹, 陈雪慧, 杨才福, 等. 440 MPa级高强度球扁钢的热处理工艺[J]. 连铸, 2016, 41(3): 70-74. Xue Dongmei, Chen Xuehui, Yang Caifu, et al. Heat treatment process of bulb flat steels with yield strength of 440 MPa[J]. Continuous Casting, 2016, 41(3): 70-74. [7]周乃鹏, 佘昌莲, 柴 锋, 等. 高湿热海洋环境低合金结构钢腐蚀研究进展[J]. 钢铁, 2022, 57(7): 137-145. Zhou Naipeng, She Changlian, Chai Feng, et al. Advances in corrosion research of low alloy steel in high humidity and high temperature marine environment[J]. Iron and Steel, 2022, 57(7): 137-145. [8]王进建, 刘 静, 陈润农, 等. 海洋工程用9CrMo 耐蚀钢筋组织及腐蚀行为[J]. 钢铁, 2023, 58(5): 112-123. Wang Jinjian, Liu Jing, Chen Runnong, et al. Microstructure and corrosion behavior of 9CrMo corrosion-resistant steel bars for marine engineering[J]. Iron and Steel, 2023, 58(5): 112-123. [9]姜 慧, 刘奇东, 徐 洁, 等. 海洋环境人工气候模拟加速试验设计[J]. 混凝土, 2013(11): 18-21, 24. Jiang Hui, Liu Qidong, Xu Jie, et al. Artificial climate simulation acceleration test design of marine environment[J]. Concrete, 2013(11): 18-21, 24. [10]刘东升, 程丙贵, 罗 咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240. Liu Dongsheng, Cheng Binggui, Luo Mi. Microstructure and impact fracture behaviour of HAZ of F460 heavy ship plate with high strength and toughness[J]. Acta Metallurgica Sinica, 2011, 47(10): 1233-1240. [11]侯振伟. 新型破冰船用热轧球扁钢开发[J]. 中国冶金, 2015, 25(9): 44-46, 63. Hou Zhenwei. Development of hot rolled flat-bulb steel for icebreaker[J]. China Metallurgy, 2015, 25(9): 44-46, 63. [12]Shen X J, Tang S, Chen J, et al. Improving toughness of heavy steel plate by deformation distribution under low finish cooling temperature[J]. Journal of Materials Engineering and Performance, 2016, 25(9): 3682-3690. [13]赵梦静, 王 峰, 习小军, 等. 钇对EH36船板钢夹杂物特性和拉伸性能的影响[J]. 钢铁, 2019, 54(7): 61-67 Zhao Mengjing, Wang Feng, Xi Xiaojun, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. lron and Steel, 2019, 54(7): 61-67. [14]王凤权, 孙 挺, 王毛球, 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展[J]. 钢铁, 2021, 56(6): 89-102. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. lron and Steel, 2021, 56(6): 89-102. [15]王红涛, 田 勇, 叶其斌, 等. 极寒环境下厚规格船舶用钢的发展[J]. 轧钢, 2018, 35(5): 48-53. Wang Hongtao, Tian Yong, Ye Qibin, et al. Development of heavy ship plate in extremely cold environment[J]. Steel Rolling, 2018, 35(5): 48-53. [16]杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发[J]. 钢铁, 2012, 47(12): 1-8. Yang Caifu, Su Hang. Research and development of high performance shipbuilding and marine engineering steel[J]. lron and Steel, 2012, 47(12): 1-8. [17]邵 军, 牛佳佳, 张玉祥. 10CrNi3MoV对称球扁钢性能均一性分析[J]. 材料开发与应用, 2013, 28(3): 14-18. Shao Jun, Niu Jiajia, Zhang Yuxiang. Research on homogeneity of 10CrNi3MoV bulb flat steel[J]. Development and Application of Materials, 2013, 28(3): 14-18. [18]陈密达, 梁丰瑞, 沈俊杰, 等. 大规格V-N微合金化球扁钢连续冷却过程中的组织性能分析[J]. 冶金分析, 2023, 43(4): 48-57. Chen Mida, Liang Fengrui, Shen Junjie, et al. Analysis of microstructure and properties of large size V-N microalloying bulb flat steel during continuous cooling process[J]. Metallurgical Analysis, 2023, 43(4): 48-57. [19]杨才福, 陈雪慧, 张 倩, 等. 粒状贝氏体对10CrNiMoV球扁钢力学性能的影响[J]. 上海金属, 2010, 32(3): 30-37. Yang Caifu, Chen Xuehui, Zhang Qian, et al. Effects of granular bainite on mechanical properties of 10CrNiMoV bulb flat steel[J]. Shanghai Metals, 2010, 32(3): 30-37. [20]陈 晨, 罗小兵, 梁丰瑞, 等. 淬火加热方法对含铜高强度球扁钢组织和性能的影响[J]. 热处理, 2021, 36(3): 31-36. Chen Chen, Luo Xiaobing, Liang Fengrui, et al. Effect of methods of heating for hardening on microstructure and properties of cooper-bearing high-strength flat bulb steel[J]. Heat Treatment, 2021, 36(3): 31-36. [21]朱志明, 柴 锋, 梁丰瑞, 等. 低合金钢感应淬火温度场模拟与优化[J]. 钢铁研究学报, 2017, 29(1): 75-80. Zhu Zhiming, Chai Feng, Liang Fengrui, et al. Temperature field simulation and optimization of low alloy-steel involved induction hardening[J]. Journal of Iron and Steel Research, 2017, 29(1): 75-80. [22]柴 锋, 杨才福, 苏 航, 等. 钒氮微合金化高强度球扁钢的强韧化机制[J]. 钢铁研究学报, 2012, 24(2): 39-43. Chai Feng, Yang Caifu, Su Hang, et al. Strengthening and toughening mechanism of high strength V-N micro-alloyed bulb flat steel[J]. Journal of Iron and Steel Research, 2012, 24(2): 39-43. [23]Chen J G, Liu C X, Wei C, et al. Effects of isothermal aging on microstructure and mechanical property of low-carbon RAFM steel[J]. Acta Metallurgica Sinica, 2019, 32(9): 101-110. [24]Milititsky M, Matlock D, Regully A, et al. Impact toughness properties of nickel-free austenitic stainless steels[J]. Materials Science and Engineering A, 2008, 496(1): 189-199. [25]刘 健, 侯振伟, 师仲然. 焊接热输入对 Nb-Ti钢CGHAZ组织韧性影响[J]. 中国冶金, 2019, 29(7): 32-38. Liu Jian, Hou Zhenwei, Shi Zhongran. Effect of welding heat input on CGHAZ microstructures and toughness of Nb-Ti steel[J]. China Metallurgy, 2019, 29(7): 32-38. |