[1]陈永祥, 李 勇, 王 涛, 等. 42CrMo钢齿圈的锻后热处理工艺[J]. 金属热处理, 2023, 48(11): 245-249. Chen Yongxiang, Li Yong, Wang Tao, et al. Heat treatment processes of 42CrMo steel gear ring after forging[J]. Heat Treatment of Metals, 2023, 48(11): 245-249. [2]陈 海, 崔 鼎. 42CrMo钢稀土微合金化对气体渗氮性能的影响[J]. 金属热处理, 2023, 48(9): 180-182. Chen Hai, Cui Ding. Effect of rare earth microalloying on gas nitriding properties of 42CrMo steel[J]. Heat Treatment of Metals, 2023, 48(9): 180-182. [3]卢金生, 李宝奎. 齿轮的精密热处理及抗疲劳制造探讨[J]. 机械传动, 2019, 43(3): 170-175. Lu Jinsheng, Li Baokui. Discussion of precision heat treatment and anti-fatigue manufacturing of gear[J]. Journal of Mechanical Transmission, 2019, 43(3): 170-175. [4]李双喜, 陈 琳, 汪美桃, 等. 预氧化+稀土铈对42CrMo钢离子渗氮的影响[J]. 金属热处理, 2021, 46(5): 186-189. Li Shuangxi, Chen Lin, Wang Meitao, et al. Effect of pre-oxidation and rare earth cerium on plasma nitriding of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(5): 186-189. [5]徐祺昊, 杨礼林, 夏 明, 等. 38CrMoAlA钢传动主轴失效分析[J]. 金属热处理, 2021, 46(9): 268-272. Xu Qihao, Yang Lilin, Xia Ming, et al. Failure analysis of 38CrMoAlA steel driveshaft[J]. Heat Treatment of Metals, 2021, 46(9): 268-272. [6]杨耀军, 李蕊轩, 田林海, 等. 锁紧轴断裂失效分析[J]. 热加工工艺, 2015, 44(12): 239-241. Yang Yaojun, Li Xinxuan, Tian Linhai, et al. Failure analysis of lock shaft fracture[J]. Hot Working Technology, 2015, 44(12): 239-241. [7]赵燕平, 闫爱淑, 郭文荣. 35CrMo钢渗前组织对气体氮化层组织和性能影响的研究[C]//全国复合材料学术会议, 2002. [8]张 文, 朱百智, 黄振建, 等. 淬火介质对42CrMo钢棒淬火组织及硬度影响的数值模拟及试验验证[J]. 金属热处理, 2020, 45(1): 56-60. Zhang Wen, Zhu Baizhi, Huang Zhenjian, et al. Numerical simulation and experimental verification of effect of quenching medium on quenching microstructure and hardness of 42CrMo steel rod[J]. Heat Treatment of Metals, 2020, 45(1): 56-60. [9]齐 羿, 杨建全, 焦 斐. 合金钢连杆在不同冷却介质中淬火后的组织与性能[J]. 金属热处理, 2023, 48(8): 64-71. Qi Yi, Yang Jianquan, Jiao Fei. Microstructure and properties of alloy steel connecting rod quenched in different quenching media[J]. Heat Treatment of Metals, 2023, 48(8): 64-71. [10]毕明龙, 刘金玲, 曹娜娜, 等. 渗氮温度对G13Cr4Mo4Ni4V钢渗氮层组织和性能的影响[J]. 轴承, 2020(11): 29-33. Bi Minglong, Liu Jinling, Cao Nana, et al. Effects of nitriding temperature on microstructure and properties of nitriding layer of G13Cr4Mo4Ni4V steel[J]. Bearing, 2020(11): 29-33. [11]刘建睿, 严宏志, 李 算, 等. 离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J]. 表面技术, 2019, 48(8): 199-205. Liu Jianrui, Yan Hongzhi, Li Suan, et al. Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J]. Surface Technology, 2019, 48(8): 199-205. [12]崔 崑. 钢的成分、组织与性能 第一分册: 合金钢基础[M]. 北京: 科学出版社, 2019: 323. [13]Fu H, Zhang J, Huang J, et al. Effect of temperature on microstructure, corrosion resistance, and toughness of salt bath nitrided tool steel[J]. Journal of Materials Engineering and Performance, 2016, 25: 3-8. [14]刘铭杰, 周为群, 董 瀚, 等. 回火温度对含钒42CrMo钢-40 ℃冲击韧性的影响[J]. 上海金属, 2023, 45(4): 62-70. Liu Mingjie, Zhou Weiqun, Dong Han, et al. Effect of tempering temperatures on impact toughness of vanadium-containing 42CrMo steel at -40 ℃[J]. Shanghai Metals, 2023, 45(4): 62-70. [15]陈俊丹, 莫文林, 王 培, 等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193. Chen Jundan, Mo Wenlin, Wang Pei, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metallurgica Sinica, 2012, 48(10): 1186-1193. [16]张守清, 胡小锋, 杜瑜宾, 等. 淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响[J]. 材料研究学报, 2022, 36(4): 250-260. Zhang Shouqing, Hu Xiaofeng, Du Yubin, et al. Effect of quenching cooling rate on mechanical properties of a Ni-Cr-Mo-B steel for offshore platform[J]. Chinese Journal of Materials Research, 2022, 36(4): 250-260. [17]Solodkin G A, Tsyrlin É S, Ratgauz L Y. Impact strength of nitrided steels[J]. Metal Science and Heat Treatment, 1991, 33(1): 20-23. [18]Genel K, Demirkol M, Capa M. Effect of ion nitriding on fatigue behaviour of AISI 4140 steel[J]. Materials Science and Engineering A, 2000, 279(1/2): 207-216. |