[1]周文标, 谢尚昇, 覃 珊, 等. 再结晶组织对7N01铝合金型材应力腐蚀敏感性的影响[J]. 热加工工艺, 2015, 44(4): 223-229. Zhou Wenbiao, Xie Shangsheng, Qin Shan, et al. Effect of recrystallization structure on stress corrosion cracking sensitivity of 7N01 aluminum alloy [J]. Hot Working Technology, 2015, 44(4): 223-229. [2]黄 英, 邓运来, 陈 龙, 等. 7N01铝合金挤压板的微结构、织构和性能[J]. 材料研究学报, 2014, 28(7): 541-548. Huang Ying, Deng Yunlai, Chen Long, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates [J]. Chinese Journal of Materials Research, 2014, 28(7): 541-548. [3]邓 鹏, 孙红亮, 陈志元, 等. T5态7N01铝合金挤压型材的组织及拉伸性能各向异性[J]. 金属热处理, 2020, 45(3): 7-10. Deng Peng, Sun Hongliang, Chen Zhiyuan, et al. Microstructure and anisotropy tensile properties of T5 state 7N01 aluminum alloy extruded profile [J]. Heat Treatment of Metals, 2020, 45(3): 7-10. [4]Li P W, Li H Z, Liang X P, et al. Enhanced low-cycle fatigue and crack propagation resistance of an Al-Cu-Mg-Si forging alloy by non-isothermal aging [J]. Materials Science and Engineering A, 2018, 732: 341-349.[5]汪 波. 晶粒尺寸和残余应力对2E12铝合金疲劳性能的影响[D]. 长沙: 中南大学, 2014. Wang Bo. Effect of grain size and residual stress on fatigue properties of 2E12 aluminum alloy [D]. Changsha: Central South University, 2014. [6]Lu D D, Lin B, Liu T L, et al. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys [J]. Journal of Materials Science and Technology, 2023, 148: 75-89. [7]那熙君, 王 宇, 李恩波, 等. 6005A焊接件在给定疲劳寿命下中值疲劳强度的研究[J]. 有色金属加工, 2021, 50(5): 22-26. Na Xijun, Wang Yu, Li Enbo, et al. Study on median fatigue strength of 6005A welds under given fatigue life [J]. Nonferrous Metals Processing, 2021, 50(5): 22-26. [8]李 琛, 王和斌, 欧 平, 等. 7075铝合金热变形行为和组织演变[J]. 金属热处理, 2023, 48(6): 147-155. Li Chen, Wang Hebin, Ou Ping, et al. Hot deformation behavior and microstructure evolution of 7050 aluminum alloy [J]. Heat Treatment of Metals, 2023, 48(6): 147-155. [9]殷 剑, 黎 诚, 金 康, 等. 7022铝合金的高温力学性能和材料本构方程研究[J]. 锻压技术, 2023, 48(1): 237-244. Yin Jian, Li Cheng, Jin Kang, et al. Study on high temperature mechanical properties and material constitutive equation for 7022 aluminum alloy [J]. Forging and Stamping Technology, 2023, 48(1): 237-244. [10]叶 拓, 何玉兵, 何文鹏, 等. 轧制态6082-T6铝合金的热压缩力学行为及微观组织分析[J]. 金属热处理, 2022, 47(2): 26-30. Ye Tuo, He Yubing, He Wenpeng, et al. Hot compression behavior and microstructure analysis of as-rolled 6082-T6 aluminum alloy [J]. Heat Treatment of Metals, 2022, 47(2): 26-30. [11]张新明, 韩建鹏, 刘胜胆, 等. 热压缩变形终了温度对7050铝合金显微组织的影响[J]. 中南大学学报(自然科学版), 2012, 43(9): 3386-3393. Zhang Xinming, Han Jianpeng, Liu Shengdan, et al. Effect of finishing temperature on microstructure of 7050 aluminum alloy during hot-compression deformation [J]. Journal of Central South University (Science and Technology), 2012, 43(9): 3386-3393. [12]黄星星. 5182铝合金热变形及再结晶研究[D]. 长沙: 中南大学, 2012. |