[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Ranganathan S. Alloyed pleasures: Multimetallic cocktails[J]. Current Science, 2003, 85(10): 1404-1406. [3]Yu B X, Ren Y S, Zeng Y, et al. Recent progress in high-entropy alloys: A focused review of preparation processes and properties[J]. Journal of Materials Research and Technology, 2024, 29: 2689-2719. [4]Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373(6557): 912-918. [5]李建存, 刘忠侠, 陈亚东, 等. CuxCr2Fe2Ni3Mn2Nb0.4Mo0.2高熵合金的组织和耐蚀性能[J]. 特种铸造及有色合金, 2018, 38(6): 666-669. Li Jiancun, Liu Zhongxia, Chen Yadong, et al. Microstructure and corrosion behavior of CuxCr2Fe2Ni3Mn2Nb0.4Mo0.2 high entropy alloy[J]. Special Casting and Nonferrous Alloys, 2018, 38(6): 666-669. [6]杨 恬, 许军锋, 李 卓. 高强韧共晶高熵合金的研究进展[J]. 金属热处理, 2021, 46(2): 1-7. Yang Tian, Xu Junfeng, Li Zhuo. Research progress of high strength and toughness eutectic high entropy alloys[J]. Heat Treatment of Metals, 2021, 46(2): 1-7. [7]骆再斌, 范子泽, 彭 振. 轻质高熵合金的研究进展[J]. 金属热处理, 2022, 47(4): 100-108. Luo Zaibin, Fan Zize, Peng Zhen. Research progress of light-weight high-entropy alloys[J]. Heat Treatment of Metals, 2022, 47(4): 100-108. [8]Zhu C H, Xu L J, Liu M J, et al. A review on improving mechanical properties of high entropy alloy: Interstitial atom doping[J]. Journal of Materials Research and Technology, 2023, 24: 7832-7851. [9]Qiu X W. Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution[J]. Results in Physics, 2019, 12: 1737-1741. [10]Wu C L, Zhang S, Zhang C H, et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate[J]. Surface and Coatings Technology, 2017, 315: 368-376. [11]Xian X, Lin L J, Zhong Z H, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys[J]. Materials Science and Engineering A, 2018, 713: 134-140. [12]Zhou X Y, Chen J, Ding R G, et al. Effect of Mn on microstructure and tensile properties of as-cast Al0.5CoFeNiC0.1 high-entropy alloy[J]. Materials Science and Engineering A, 2023, 873: 144951. [13]Zhou Y J, Zhang Y, Wang Y L, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys[J]. Materials Science and Engineering A, 2007, 454-455: 260-265. [14]Yan X L, Guo H, Yang W, et al. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties[J]. Journal of Alloys and Compounds, 2021, 860: 158436. [15]Kumar A, Swarnakar A K, Basu A, et al. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 748: 889-897. [16]Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys[J]. Materials Science and Engineering A, 2010, 527(26): 6975-6979. [17]Sunkari U, Reddy S R, Chatterjee S, et al. Effect of prolonged aging on phase evolution and mechanical properties of intermetallic strengthened CoCrFeNi2.1Nbx high entropy alloys[J]. Materials Letters, 2019, 248: 119-122. [18]Liao Y C, Li T H, Tsai P H, et al. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys[J]. Intermetallics, 2020, 117: 106673. [19]Feng J J, Gao S, Han K, et al. Effects of minor B addition on microstructure and properties of Al19Co20Fe20Ni41 eutectic high-entropy alloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 1049-1058. [20]Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 628: 170-185. [21]Wu H, Huang S R, Zhu C Y, et al. Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys[J]. Progress in Natural Science: Materials International, 2020, 30(2): 239-245. [22]Jin X, Liang Y X, Bi J, et al. Non-monotonic variation of structural and tensile properties with Cr content in AlCoCrxFeNi2 high entropy alloys[J]. Journal of Alloys and Compounds, 2019, 798: 243-248. [23]Meng F L, Qiu J W, Baker I. The effects of chromium on the microstructure and tensile behavior of Fe30Ni20Mn35Al15[J]. Materials Science and Engineering A, 2013, 586: 45-52. [24]Munitz A, Salhov S, Hayun S, et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2016, 683: 221-230. [25]张 越, 刘 亮, 商 剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian. Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [26]Ren B, Liang Y C, Zhang X F, et al. Corrosion behavior of NbxCu0.3Cr2Fe2Ni3Mn2 high-entropy alloys in HNO3 solution[J]. Results in Physics, 2023, 51: 106780. [27]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. |