[1]Yan P X, Zhang X M, Xu J W, et al. High-temperature behavior of the boride layer of 45 carbon steel [J]. Materials Chemistry and Physics, 2001, 71(1): 107-110. [2]Spence T W, Makhlouf M M. Characterization of the operative mechanism in potassium fluoborate activated pack boriding of steels [J]. Journal of Materials Processing Technology, 2005, 168(1): 127-136. [3]Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, et al. Indentation size effect on the Fe2B/substrate interface [J]. Surface and Coatings Technology, 2011, 206(7): 1816-1823. [4]Campos-Silva I, Martínez-Trinidad J, Donu-Ruíz M A, et al. Interfacial indentation test of FeB/Fe2B coatings [J]. Surface and Coatings Technology, 2011, 206(7): 1809-1815. [5]Campos-Silva I, Ramirez G, Figueroa U, et al. Evaluation of boron mobility on the phases FeB, Fe2B and diffusion zone in AISI 1045 and M2 steels [J]. Applied Surface Science, 2007, 253(7): 3469-3475. [6]Uslu I, Comert H, Ipek M, et al. A comparison of borides formed on AISI 1040 and AISI P20 steels [J]. Materials and Design, 2007, 28(6): 1819-1826. [7]袁庆龙, 曹晶晶. 45钢渗硼工艺对渗层组织与性能的影响[J]. 热加工工艺, 2010, 39(2): 134-136. Yuan Qinglong, Cao Jingjing. Effect of boronization technology on microstructure and properties of boronizing layer on 45 steel [J]. Hot Working Technology, 2010, 39(2): 134-136. [8]彭志辉, 杨志兵, 王少武, 等. 稀土对45钢渗硼层组织和性能的影响[J]. 金属热处理, 2004, 29(7): 31-34. Peng Zhihui, Yang Zhibing, Wang Shaowu, et al. Effect of rare earth on structure and properties of boronizing layer [J]. Heat Treatment of Metals, 2004, 29(7): 31-34. [9]王 兰, 吴奕明, 卞国阳, 等. 稀土La2O3对45钢渗硼层性能的影响[J]. 表面技术, 2019, 48(2): 94-97. Wang Lan, Wu Yiming, Bian Guoyang, et al. Effect of rare earth La2O3 on performance of 45 steel boronized layer [J]. Surface Technology, 2019, 48(2): 94-97. [10]黄小明, 崔 霞, 欧阳德来, 等. 稀土催渗下的45钢固体渗硼工艺研究[J]. 热加工工艺, 2013, 42(10): 194-197. Huang Xiaoming, Cui Xia, Ouyang Delai, et al. Study on solid-boronizing process with rare earth elements catalysis for 45 steel [J]. Hot Working Technology, 2013, 42(10): 194-197. [11]许伯藩, 张文峰, 张全萍, 等. 低温稀土硼共渗研究[J]. 武汉科技大学学报, 2000, 23(1): 18-21. Xu Bofan, Zhang Wenfeng, Zhang Quanpin, et al. Study on the low temperature powder RE-boronizing [J]. Journal of Wuhan University of Science and Technology, 2000, 23(1): 18-21. [12]闫忠琳, 叶 宏. 碳氮共渗预处理对渗硼层组织性能的影响[J]. 热加工工艺, 2007, 36(20): 74-78. Yan Zhonglin, Ye Hong. Effect of pre-carbonitriding on microstructure and properties of boronizing layer [J]. Hot Working Technology, 2007, 36(20): 74-78. [13]赵建生, 陈枉秋, 谢长生, 等. 对渗硼层脆性几种测试方法的评价[J]. 金属热处理, 1990, 15(12): 32-35. Zhao Jiansheng, Chen Wangqiu, Xie Changsheng, et al. The evaluation on methods for detecting brittleness of boronized layer [J]. Heat Treatment of Metals, 1990, 15(12): 32-35. [14]李木森, 崔建军, 曹丽敏, 等. 渗硼层表面脆性测量方法探讨[J]. 理化检验-物理分册, 1995, 31(5): 33-34. Li Musen, Cui Jianjun, Cao Limin, et al. Discussion on measuring method of surface brittleness of boride layer [J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 1995, 31(5): 33-34. [15]李木森, 侯绪荣, 郭晓燕, 等. 用显微硬度压痕结合声发射研究硼化物层脆性[J]. 理化检验-物理分册, 1989, 25(1): 7-12. Li Musen, Hou Xunrong, Guo Xiaoyan, et al. Study of brittleness of boride layers by microhardness indentation combined with acoustic emission [J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 1989, 25(1): 7-12. [16]汤光平, 黄文荣, 周文凤. 渗硼层脆性及其控制措施[J]. 材料保护, 2003, 36(3): 57-59. Tang Guangping, Huang Wenrong, Zhou Wenfeng. Brittlement and controlling measures of boriding layer [J]. Materials Protection, 2003, 36(3): 57-59. [17]张 菁, 董仕节, 黄 伦. Cr12MoV钢渗硼层脆性与耐磨性研究[J]. 湖北汽车工业学院学报, 2005, 19(2): 16-19. Zhang Jing, Dong Shijie, Huan Lun. Study of brittleness and wear resistance of boride layer to steel of Cr12MoV [J]. Journal of Hubei University of Automotive Technology, 2005, 19(2): 16-19. [18]宋月鹏, 柳洪洁, 刘胜新, 等. 循环淬火渗硼锤片表层硼化物层的脆性研究[J]. 农业机械学报, 2003, 34(3): 148-149. Song Yuepeng, Liu Hongjie, Liu Shengxin, et al. Research on the brittleness of surface layer boride of hammer sheet with cyclic quenching [J]. Journal of Agricultural Machinery, 2003, 34(3): 148-149. [19]周 芳, 刘 凯, 罗 宏, 等. 20钢包埋粉末渗硼层的组织及耐蚀性能研究[J]. 热加工工艺, 2017, 46(2): 164-168. Zhou Fang, Liu Kai, Luo Hong, et al. Research on structure and corrosion resistance of pack boronized layer for 20 steel [J]. Hot Working Technology, 2017, 46(2): 164-168. [20]李雪松, 吴 化, 吴 一. 20CrMo钢表面固体渗硼工艺及性能[J]. 金属热处理, 2005, 34(5): 57-60. Li Xuesong, Wu Hua, Wu Yi. Pack boronizing process and properties of the boride layer on 20CrMo steel [J]. Heat Treatment of Metals, 2005, 34(5): 57-60. [21]Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, et al. A study of indentation for mechanical characterization of the Fe2B layer [J]. Surface and Coatings Technology, 2013, 232: 173-181. [22]Sireli G K, Bora A S, Timur S. Evaluating the mechanical behavior of electrochemically borided low-carbon steel [J]. Surface and Coatings Technology, 2019, 381: 125177. [23]Sen S, Ozbek I, Sen U, et al. Mechanical behavior of borides formed on borided cold work tool steel [J]. Surface and Coatings Technology, 2001, 135(2-3): 173-177. [24]Kulka M, Makuch N, Piasecki A. Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron [J]. Surface and Coatings Technology, 2017, 325: 515-532. [25]Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, et al. Improved fracture toughness of boride coating developed with a diffusion annealing process [J]. Surface and Coatings Technology, 2013, 237: 429-439. [26]Makuch N. Nanomechanical properties and fracture toughness of hard ceramic layer produced by gas boriding of Inconel 600 alloy [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(2): 428-448. [27]Hernández-Sanchez E, Rodriguez-Castro G, Meneses-Amador A, et al. Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer [J]. Surface and Coatings Technology, 2013, 237: 292-298. [28]Makuch N, Kulka M. Fracture toughness of hard ceramic phases produced on Nimonic 80A-alloy by gas boriding [J]. Ceramics International, 2016, 42: 3275-3289. |