[1]胡 平, 戴明华, 盈 亮, 等. 热成形高强度钢22MnB5在车身轻量化设计中的应用[C]//中国汽车轻量化技术研讨会. 2012: 281-237. Hu Ping, Dai Minghua, Ying Liang, et al. Application of hot formed high strength steel 22MnB5 in lightweight design of vehicle bodies[C]//China Automotive Lightweight Technology Seminar. 2012: 281-237. [2]康永林. 现代汽车板工艺及成形理论与技术[M]. 北京: 冶金工业出版社, 2009: 46-52. Kang Yonglin. Theory and Technology of Processing and Forming for Advanced Automotive Steel Sheets [M]. Beijing: Metallurgical Industry Press, 2009: 46-52. [3]Tang B, Yuan Z, Cheng G, et al. Experimental verification of tailor-welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state[J]. Materials Science and Engineering A, 2013, 585: 304-318. [4]马 宁, 申国哲, 张宗华, 等. 高强度钢板热冲压材料性能研究及在车身设计中的应用[J]. 机械工程学报, 2011, 47(8): 60-63. Ma N, Shen G Z, Zhang Z H, et al. Material performance of hot-forming high strength steel and its application in vehicle body[J]. Journal of Mechanical Engineering, 2011, 47(8): 60-63. [5]Chang Z Y, Li Y J, Wu D. Enhanced ductility and toughness in 2000 MPa grade press hardening steels[J]. Materials Science and Engineering A, 2020, 784(139): 329-342. [6]Guo R Q, Ying L, Hu P. Experimental study on hot bending of 22MnB5 steel[J]. Advanced Materials Research, 2011, 314-316: 66-69. [7]Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen induced delayed fracture in high strength hot stamping steels[J]. Materials Science and Engineering A, 2015, 626(36): 136-138. [8]Liu H P, Lu X W, Jin X J, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process[J]. Scripta Materialia, 2011, 64: 749-758. [9]Mohrbacher H. Martensitic automotive steel sheet-Fundamentals and metallurgical optimization strategies[J]. Advanced Materials Research, 2015, 1063(12): 130-145. [10]王 华, 史 文, 何燕霖, 等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268. Wang H, Shen W, He Y L, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels[J]. Acta Metallurgica Sinica, 2011, 47(3): 263-268. [11]Kolleck R, Veit R, Merklein M, et al. Investigation on induction heating for hot stamping of boron alloyed steels[J]. CIRP Annals, 2009, 58(1): 275-278. [12]ASTM E8-2021. Standard test methods for tension testing of metallic materials[S]. [13]VDA 238-100. Plate bending test for metallic semi-finished materials[S]. [14]Liang Y, Lu J D, Chang Y, et al. Optimization evaluation test of strength and toughness parameters for hot-stamping high strength steels[J]. Journal of Iron and Steel Research International, 2013, 20(11): 51-56. [15]江海涛, 康永林, 于 浩, 等. 烘烤硬化汽车钢板的开发与研究进展[J]. 汽车工艺与材料, 2005(3): 1-4, 7. Jiang Haitao, Kang Yonglin, Yu Hao, et al. Research progress and development of bake hardening steel sheet for automobile[J]. Automotive Technology and Materials, 2005(3): 1-4, 7. [16]Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium Mn steel: Metallurgy, mechanical properties and warm stamping process[J]. Materials and Design, 2016, 94: 424-434. [17]Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J]. Acta Materialia, 2006, 54(2): 435-443. [18]Arola A M, Kaijalainen A, Kesti V, et al. Digital image correlation and optical strain measuring in bendability assessment of ultra-high strength structural steels[J]. Procedia Manufacturing, 2019, 29(4): 398-413. [19]Li N, Lin J, Balint D S, et al. Modelling of austenite formation during heating in boron steel hot stamping processes[J]. Journal of Materials Processing Technology, 2016, 237(12): 394-402. |